

2016 HSC Mathematics Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	В
2	С
3	В
4	A
5	В
6	A
7	A
8	D
9	C
10	D

Section II

Question 11 (a)

Criteria	Marks
Provides correct sketch	2
Identifies radius, or equivalent merit	1

Sample answer:

Question 11 (b)

Criteria	Marks
Provides correct derivative	2
Attempts to use quotient rule, or equivalent merit	1

$$\frac{d}{dx} \left(\frac{x+2}{3x-4} \right) = \frac{(3x-4)(1) - (x+2)(3)}{(3x-4)^2}$$
$$= \frac{3x-4-3x-6}{(3x-4)^2}$$
$$= \frac{-10}{(3x-4)^2}$$

Question 11 (c)

Criteria	Marks
Provides correct solution	2
• Establishes that $x \le 5$, or equivalent merit	1

Sample answer:

$$|x-2| \le 3$$

$$\therefore -3 \le x - 2 \le 3$$

$$-1 \le x \le 5$$

Question 11 (d)

Criteria	Marks
Provides correct solution	2
Correct primitive, or equivalent merit	1

$$\int_{0}^{1} (2x+1)^{3} dx = \left[\frac{1}{2} \times \frac{1}{4} (2x+1)^{4} \right]_{0}^{1}$$
$$= \frac{1}{8} (3)^{4} - \frac{1}{8} (1)^{4}$$
$$= \frac{81}{8} - \frac{1}{8}$$
$$= \frac{80}{8}$$
$$= 10$$

Question 11 (e)

Criteria	Marks
Provides correct solution	3
• Obtains $x^2 - 2x - 8 = 0$ and solves for x, or equivalent merit	2
• Attempts to eliminate x or y, or equivalent merit	1

Sample answer:

$$y = -5 - 4x$$

$$y = 3 - 2x - x^{2}$$
Subs ① into ②
$$-5 - 4x = 3 - 2x - x^{2}$$

$$x^{2} - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

$$x = 4 \text{ or } -2$$
Subst
$$x = 4 \text{ into } ① \Rightarrow y = -5 - 4(4)$$

$$= -21$$
Subst
$$x = -2 \text{ into } ① \Rightarrow y = -5 - 4(-2)$$

$$= 3$$

 \therefore points of intersection are (4, -21) and (-2,3).

Question 11 (f)

Criteria	Marks
Provides correct solution	2
• Obtains $\sec^2 \frac{\pi}{8}$, or equivalent merit	1

Sample answer:

$$y = \tan x$$

$$\frac{dy}{dx} = \sec^2 x$$
When $x = \frac{\pi}{8}$, $\frac{dy}{dx} = \sec^2\left(\frac{\pi}{8}\right)$

$$= \frac{1}{\cos^2 \frac{\pi}{8}}$$

$$\approx 1.17$$

:. Gradient of tangent is 1.17.

Question 11 (g)

Criteria	Marks
Provides correct solution	2
Obtains one correct answer, or equivalent merit	1

Sample answer:

$$\sin\left(\frac{x}{2}\right) = \frac{1}{2} \quad \text{for} \quad 0 \le x \le 2\pi$$

$$\text{Note} \quad 0 \le \frac{x}{2} \le \pi$$

$$\therefore \left(\frac{x}{2}\right) = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$x = \frac{\pi}{3}, \frac{5\pi}{3}$$

Question 12 (a) (i)

Criteria	Marks
Provides correct solution	2
Obtains correct slope, or equivalent merit	1

$$\frac{y-4}{x-2} = \frac{1-4}{6-2}$$

$$\frac{y-4}{x-2} = \frac{-3}{4}$$

$$4(y-4) = -3(x-2)$$

$$4y-16 = -3x+6$$

$$3x+4y-22 = 0$$

Question 12 (a) (ii)

Criteria	Marks
Provides correct solution	2
Attempts to calculate perpendicular distance of a point from a line, or equivalent merit	1

Sample answer:

BC: 3x + 4y - 22 = 0
∴ AD =
$$\frac{|3(1) + 4(0) - 22|}{\sqrt{3^2 + 4^2}}$$

$$= \frac{|-19|}{\sqrt{25}}$$

$$= \frac{19}{5}$$

Question 12 (a) (iii)

Criteria	Marks
Provides correct solution	2
• Finds distance from B to C, or equivalent merit	1

$$BC = \sqrt{(2-6)^2 + (4-1)^2}$$

$$= \sqrt{16+9}$$

$$= \sqrt{25}$$

$$= 5$$

$$\therefore \text{Area } \triangle ABC = \frac{1}{2} \times 5 \times \frac{19}{5}$$

$$= \frac{19}{2} \text{ square units}$$

Question 12 (b) (i)

	Criteria	Marks
•	Provides correct explanation	1

Sample answer:

 $\angle BOA = x^{\circ}$ (\angle s opposite equal sides in $\triangle ABO$)

 $\therefore \angle CBO = 2x^{\circ}$ (exterior \angle of $\triangle ABO$ equal to sum of two opposite interior \angle s)

Question 12 (b) (ii)

Criteria	Marks
Provides correct solution	2
• Attempts to use the fact that triangle <i>OBC</i> is isosceles, or equivalent merit	1

Sample answer:

$$OC = OB$$
 (radii)
 $\angle BCO = \angle CBO$ (\angle s opposite equal sides in $\triangle CBO$)
= $2x^{\circ}$

Then $\angle COD = \angle CAO + \angle BCO$ (exterior \angle of $\triangle CAO$ equals sum of two opposite interior \angle s)

$$\therefore 87 = x + 2x$$

$$87 = 3x$$

$$x = 29$$

Question 12 (c)

Criteria	Marks
Provides correct solution	3
• Substitutes correctly into cosine rule, and finds angle or equivalent merit	2
• Identifies the complementary angle to θ , or equivalent merit	1

Sample answer:

$$\cos \alpha = \frac{15^2 + 20^2 - 8^2}{2 \times 20 \times 15}$$
$$= \frac{561}{600}$$
$$\alpha \approx 20.77^{\circ}$$

 $\theta \approx 69^{\circ}$ to nearest degree.

Question 12 (d) (i)

Criteria	Marks
Provides correct derivative	1

$$y = xe^{3x}$$

$$\frac{dy}{dx} = 3xe^{3x} + e^{3x}$$
$$= e^{3x}(1+3x)$$

Question 12 (d) (ii)

Criteria	Marks
Provides correct solution	2
Attempts to use part (i) or equivalent merit	1

Find exact value of
$$\int_0^2 e^{3x} (3+9x) dx$$

$$\int_{0}^{2} e^{3x} (3+9x) dx = \int_{0}^{2} 3e^{3x} (1+3x) dx$$
$$= 3 \int_{0}^{2} e^{3x} (1+3x) dx$$
$$= 3 \left[xe^{3x} \right]_{0}^{2}$$
$$= 3 \left[(2e^{6}) - (0e^{0}) \right]$$
$$= 6e^{6}$$

Question 13 (a) (i)

Criteria	Marks
Provides correct solution	4
• Finds the <i>x</i> -values at which the stationary points occur and verifies the maximum turning point, or equivalent merit	3
• Finds the x-values at which the stationary points occur, or equivalent merit	2
• Attempts to solve $\frac{dy}{dx} = 0$, or equivalent merit	1

Sample answer:

$$y = 4x^3 - x^4$$

Find stationary points and determine nature.

$$\frac{dy}{dx} = 12x^2 - 4x^3$$

Need
$$\frac{dy}{dx} = 0$$

$$12x^2 - 4x^3 = 0$$

$$4x^2(3-x) = 0$$

when
$$x = 0$$
 or $x = 3$.

when
$$x = 0$$
 $y = 0$
when $x = 3$ $y = 27$

Checking the gradients for

$$x = 0,$$
 $x = 0^ 0$ 0^+ $y' + ve = 0$ $+ve$

 \therefore horizontal point of inflexion at x = 0, ie at (0, 0)

$$x = 3,$$
 $x = 3^{+} + 3 = 3^{-}$
 $y' + ve = 0 - ve$

 \therefore local maximum at x = 3, ie at (3, 27)

Question 13 (a) (ii)

Criteria	Marks
Correct solution	2
• Locates the stationary points on the sketch of the curve, or equivalent merit	1

Sample answer:

Question 13 (b) (i)

Criteria	Marks
Provides correct solution	2
Attempts to complete the square, or equivalent merit	1

Sample answer:

$$x^{2} - 4x = 12y + 8$$

$$x^{2} - 4x + 4 = 12y + 12$$

$$x^{2} - 4x + 4 = 12(y+1)$$

$$(x-2)^{2} = 4(3)(y+1)$$

∴ focal length = 3

Question 13 (b) (ii)

Criteria	Marks
Provides correct solution	1

Sample answer:

 \therefore focus (2,2)

Question 13 (c) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

A = 10

Question 13 (c) (ii)

Criteria	Marks
Provides correct solution	2
• Obtains $5 = 10e^{-163k}$, or equivalent merit	1

$$M(t) = 10e^{-kt}$$

$$M(163) = 5$$

$$\therefore 5 = 10e^{-163k}$$

$$\frac{1}{2} = e^{-163k}$$

$$-163k = \log_e\left(\frac{1}{2}\right)$$

$$k = \frac{\log_e\left(\frac{1}{2}\right)}{-163}$$

$$\approx 0.004252436$$

Question 13 (d)

Criteria	Marks
Provides correct solution	3
Finds the area under the cosine curve, or equivalent merit	2
• Finds the area under $y = x$, or equivalent merit	1

Sample answer:

Area
$$= \int_0^1 \sqrt{2} \cos\left(\frac{\pi}{4}x\right) dx - \frac{1}{2} \times 1 \times 1$$
$$= \sqrt{2} \times \frac{4}{\pi} \left[\sin\left(\frac{\pi}{4}x\right) \right]_0^1 - \frac{1}{2}$$
$$= \frac{4\sqrt{2}}{\pi} \left(\sin\frac{\pi}{4} - \sin0 \right) - \frac{1}{2}$$
$$= \frac{4\sqrt{2}}{\pi} \left(\frac{1}{\sqrt{2}} - 0 \right) - \frac{1}{2}$$
$$= \frac{4}{\pi} - \frac{1}{2} \text{ square units}$$
or
$$\frac{8 - \pi}{2\pi}$$

Question 14 (a)

Criteria	Marks
Provides correct solution	3
Attempts to find a difference in areas or equivalent merit	2
Applies Simpson's Rule to the existing heights or equivalent merit	1

Sample answer:

The increase in area can be approximated using Simpson's Rule.

Area increase
(Simpson, 5 values)
$$= \frac{1}{3} [2 \times (2-2) + 2 \times (3-2.5) + 8 \times (2.78-2.38)]$$
$$= \frac{1}{3} [0 + 1 + 3.2]$$
$$\approx 1.4 \text{ m}^2$$

Question 14 (b) (i)

	Criteria	Marks
•	Provides correct solution	2
•	Obtains a correct expression for A_1 , or equivalent merit	1

Sample answer:

$$A_0 = 100000$$

$$A_1 = 0.65 \times 100000 + 5000$$

$$A_2 = 0.65 A_1 + 5000$$

$$= 0.65(0.65 \times 100\,000 + 5000) + 5000$$

Question 14 (b) (ii)

Criteria	Marks
Provides correct solution	1

Sample answer:

$$A_2 = 0.65^2 \times 100\,000 + 0.65 \times 5000 + 5000$$

$$\mathbf{A}_n = 0.65^n \times 100\,000 + 5000(0.65^{n-1} + 0.65^{n-2} + \square + 1)$$

$$S_n = \frac{1(1 - 0.65^n)}{0.35}$$

$$A_n = 0.65^n \times 100000 + 5000 \frac{(1 - 0.65^n)}{0.35}$$

Question 14 (b) (iii)

Criteria	Marks
Provides correct answer	1

$$A_{14} = 0.65^{14} \times 100\,000 + 5000 \frac{\left(1 - 0.65^{14}\right)}{0.35}$$
$$= 14\,491.7 \square$$
$$\approx 14\,500$$

Question 14 (c) (i)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

If w is the total width then

Area =
$$720 = x \times w$$

$$w = \frac{720}{x}$$

Perimeter =
$$5 \times x + w$$

= $5x + \frac{720}{x}$

Question 14 (c) (ii)

Criteria	Marks
Provides correct solution	3
Finds length at stationary point, or equivalent merit	2
• Finds $\frac{d\ell}{dx}$, or equivalent merit	1

Sample answer:

Stationary points occur when

$$0 = \frac{dl}{dx}$$

$$= 5 - \frac{720}{x^2}$$

$$\frac{720}{x^2} = 5$$

$$x^2 = 144$$

x = 12 (x is length so ignore -12)

$$\frac{d^2\ell}{dx^2} = \frac{1440}{x^3}$$
 at $x = 12$
$$\frac{d^2\ell}{dx^2} = \frac{1440}{12^3} > 0$$

so minimum at x = 12

$$\ell = 5 \times 12 + \frac{720}{12}$$
$$= 120$$

Question 14 (d)

Criteria	Marks
Provides correct solution	2
Sums the series, or equivalent merit	1

Sample answer:

$$1 + x + x^{2} + x^{3} + x^{4} = \frac{1 - x^{5}}{1 - x}$$

$$= \frac{x^{5} - 1}{x - 1}$$

$$\lim_{x \to 1} \frac{x^{5} - 1}{x - 1} = \lim_{x \to 1} 1 + x + x^{2} + x^{3} + x^{4}$$

$$= 5$$

$$a = 1, r = x$$
for $x \neq 1$

Question 14 (e)

Criteria	Marks
Provides correct solution	2
• Expresses terms involving powers of 2, or equivalent merit	1

$$\log 2 + \log 4 + \log 8 + \dots + \log 512$$

$$= \log 2 + \log 2^2 + \log 2^3 + \dots + \log 2^9$$

$$= \log 2 + 2\log 2 + 3\log 2 + \dots + \log 2$$

$$= \frac{9}{2} (\log 2 + 9\log 2)$$

$$= \frac{9}{2} \times 10\log 2$$

$$= 45\log 2$$

Question 15 (a)

Criteria	Marks
Provides correct solution	4
• Evaluates the correct integral for the volume when C_2 is revolved, or equivalent merit	3
Recognises the sum of two volumes is required and makes progress with both, or equivalent merit	2
Attempts to find a volume using integration, or equivalent merit	1

Sample answer:

Volume of C₁ rotated:

$$V_1 = \frac{1}{2} \times \frac{4}{3}\pi 2^3$$
$$= \frac{16\pi}{3}$$

Volume of C₂ rotated:

Volume of
$$C_2$$
 rotated
$$V_2 = \pi \int_0^3 y^2 dx$$

$$= \pi \int_0^3 4 \left(1 - \frac{x^2}{9} \right) dx$$

$$= 4\pi \left[x - \frac{x^3}{27} \right]_0^3$$

$$= 4\pi \left(3 - \frac{27}{27} \right)$$

$$= 8\pi$$

$$\therefore V = \frac{16\pi}{3} + 8\pi$$
$$= \frac{40\pi}{3}$$

Question 15 (b) (i)

Criteria	Marks
Provides correct solution	2
Provides correct tree diagram, or equivalent merit	1

Sample answer:

∴P (game ends before 4th roll) =
$$\frac{1}{8} + \frac{7}{8} \times \frac{1}{8} + \left(\frac{7}{8}\right)^2 \times \frac{1}{8}$$

Alternative solution:

P (ends after 1 roll) =
$$\frac{1}{8}$$

P (ends after 2 rolls) =
$$\frac{7}{8} \times \frac{1}{8}$$

P (ends after 3 rolls) =
$$\left(\frac{7}{8}\right)^2 \times \frac{1}{8}$$

∴P (ends before 4th roll) =
$$\frac{1}{8} + \frac{7}{8} \times \frac{1}{8} + \left(\frac{7}{8}\right)^2 \times \frac{1}{8}$$

Question 15 (b) (ii)

Criteria	Marks
Provides correct solution	3
• Finds an equation or inequality of probabilities that can be solved for n , or equivalent merit	2
• Finds, as a series, the probability that the game ends before the <i>n</i> th roll, or equivalent merit	1

Sample answer:

P (ends before *n*th roll)

$$= \frac{1}{8} + \frac{7}{8} \times \frac{1}{8} + \left(\frac{7}{8}\right)^{2} \times \frac{1}{8} + \left(\frac{7}{8}\right)^{3} \times \frac{1}{8} + \dots + \left(\frac{7}{8}\right)^{n-2} \times \frac{1}{8}$$

$$= \frac{1}{8} \left[1 + \frac{7}{8} + \left(\frac{7}{8}\right)^{2} + \left(\frac{7}{8}\right)^{3} + \dots + \left(\frac{7}{8}\right)^{n-2} \right]$$

$$= \frac{1}{8} \times \frac{\left(\left(\frac{7}{8}\right)^{n-1} - 1\right)}{\left(\frac{7}{8}\right) - 1}$$

$$= 1 - \left(\frac{7}{8}\right)^{n-1}$$

Let
$$1 - \left(\frac{7}{8}\right)^{n-1} = \frac{3}{4}$$
$$\left(\frac{7}{8}\right)^{n-1} = \frac{1}{4}$$
$$(n-1)\log\left(\frac{7}{8}\right) = \log\left(\frac{1}{4}\right)$$
$$n = 1 + \frac{\log\frac{1}{4}}{\log\frac{7}{8}}$$
$$\approx 11.3817...$$

 \therefore For probability of more than $\frac{3}{4}$, we require n = 12

Question 15 (c) (i)

Criteria	Marks
Provides correct solution	2
• Identifies one pair of equal angles, giving reason(s)	1

Sample answer:

In \triangle s *FCB*, *BAT*

 $\angle FCB = \angle BAT$ (both 90° angles in square ABCD)

Now $AB \parallel DC$ (opposite sides of a square)

 $\therefore \angle CFB = \angle ABT$ (alternate $\angle s$, $AB \parallel DC$)

 $\therefore \triangle FCB \parallel \mid \triangle BAT$ (2 pairs of equal \angle s).

Question 15 (c) (ii)

Criteria	Marks
Provides correct solution	2
• Shows that $\angle TAS$ and $\angle BAE$ are complementary, or equivalent merit	1

Sample answer:

$$\angle TSA = \angle BAD = \angle AEB = 90^{\circ}$$

$$\angle TAS + \angle BAE = 90^{\circ} (\angle sum, straight line SAE)$$

$$\angle ABE + \angle BAE = 90^{\circ} (\angle sum \triangle ABE)$$

$$\therefore \angle TAS = \angle ABE$$

In \triangle s TSA, AEB

 $\angle TAS = \angle ABE$ (above)

$$\angle TSA = \angle AEB = 90^{\circ} \text{ (given)}$$

 $\therefore \triangle TSA ||| \triangle AEB$ (2 pairs of equal \angle s).

Question 15 (c) (iii)

Criteria	Marks
Provides correct solution	2
• Obtains $AT = \frac{1}{x}$, or equivalent merit	1

Sample answer:

$$\frac{TS}{AE} = \frac{TA}{AB}$$
 (matching sides in similar \triangle s)

$$\frac{h}{y} = \frac{TA}{1}$$

$$\therefore h = y.TA$$

Also $\frac{TA}{BC} = \frac{BA}{FC}$ (matching sides in similar \triangle s)

$$\frac{TA}{1} = \frac{1}{x}$$

$$\therefore TA = \frac{1}{x}$$

Hence $h = y \times \frac{1}{x}$

$$\therefore h = \frac{y}{x}$$

Question 16 (a) (i)

Criteria	Marks
Provides correct answer	1

When
$$t = 0$$

 $v = 2 - \frac{4}{0+1} = -2$

Question 16 (a) (ii)

	Criteria		
• P1	rovides correct solution	2	
• Fi	inds the value of t for which $v = 0$, or equivalent merit	1	

Sample answer:

The particle is stationary when v = 0.

So
$$v = 0 \Rightarrow 0 = 2 - \frac{4}{t+1}$$

$$\frac{4}{t+1} = 2$$

$$4 = 2(t+1)$$

$$4 = 2t+2$$

$$2 = 2t$$

$$1 = t$$

So particle is stationary when t = 1.

acceleration =
$$\frac{dv}{dt}$$

$$\frac{dv}{dt} = -4(t+1)^{-2} \times -1$$

$$= \frac{4}{(t+1)^2}$$
when $t = 1$ $\frac{dv}{dt} = \frac{4}{(1+1)^2} = \frac{4}{4} = 1$

acceleration is $1 ms^{-2}$ when particle is stationary.

Question 16 (a) (iii)

Criteria	Marks
Provides correct graph	2
• Describes the behaviour of v for large t, or equivalent merit	1

Question 16 (a) (iv)

Criteria	Marks
Provides correct solution	3
• Correctly evaluates $\int_{1}^{7} v dt$, or equivalent merit	2
• Recognises the particle changes direction at $t = 1$, or equivalent merit	1

Sample answer:

Particle changes direction when t = 1 travelling in negative direction for $0 \le t < 1$, so

Distance travelled
$$= -\int_0^1 v \, dt + \int_1^7 v \, dt$$

$$= -\int_0^1 2 - \frac{4}{t+1} \, dt + \int_1^7 2 - \frac{4}{t+1} \, dt$$

$$= -\left[2t - 4\log(t+1)\right]_0^1 + \left[2t - 4\log(t+1)\right]_1^7$$

$$= -\left(2 - 4\log 2 - 0 + 4\log 1\right) + \left(14 - 4\log 8 - 2 + 4\log 2\right)$$

$$= -2 + 4\log 2 + 14 - 4\log 8 - 2 + 4\log 2$$

$$= 10 + 8\log 2 - 4\log 2^3$$

$$(= 10 + 8\log 2 - 12\log 2)$$

$$(= 10 - 4\log 2)$$

Question 16 (b) (i)

Criteria	Marks
Provides correct solution	2
• Attempts to find $\frac{dy}{dt}$, or equivalent merit	1

Sample answer:

$$y = 200 (1 + 19e^{-0.5t})^{-1}$$
Rate of growth
$$= \frac{dy}{dt}$$

$$= -200 (1 + 19e^{-0.5t})^{-2} \times \left(\frac{-19e^{-0.5t}}{2}\right)$$

$$= \frac{1900e^{-0.5t}}{(1 + 19e^{-0.5t})^2}$$

Question 16 (b) (ii)

Criteria	Marks
Provides correct solution with justification	2
Provides range, or equivalent merit	1

Sample answer:

All terms in $\frac{dy}{dt}$ are positive so y is increasing.

when
$$t = 0$$
 $y = \frac{200}{1+19} = 10$.
so $y \ge 10$ for $t \ge 0$.

As
$$t \to \infty$$
 $e^{-0.5t} \to 0$
so $y \to \frac{200}{1+0} = 200$

hence $10 \le y < 200$.

Question 16 (b) (iii)

Criteria	Marks
Provides correct solution	1

Sample answer:

$$\frac{y}{400}(200 - y) = \frac{1}{2(1 + 19e^{-0.5t})} \left(200 - \frac{200}{1 + 19e^{-0.5t}}\right)$$

$$= \frac{100}{(1 + 19e^{-0.5t})} \left(\frac{1 + 19e^{-0.5t} - 1}{1 + 19e^{-0.5t}}\right)$$

$$= \frac{1900e^{-0.5t}}{(1 + 19e^{-0.5t})^2}$$

$$= \frac{dy}{dt}$$

Question 16 (b) (iv)

Criteria	Marks
Provides correct solution	2
• Recognises the importance of the vertex of the parabola in part (iii), or equivalent merit	1

Sample answer:

$$\frac{dy}{dt} = \frac{y}{400} (200 - y)$$
$$= \frac{200y - y^2}{400}$$

which is a quadratic in y with roots at y = 0 and y = 200. Since the coefficient of y^2 is negative, the quadratic has a max at y = 100.

 \therefore Population growing fastest when population is y = 100.

2016 HSC Mathematics Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	4.2	P5
2	1	3.1	Н5
3	1	9.1, 9.5	P5
4	1	5.1	P4
5	1	12.5, 13.5	Н5
6	1	13.3	Н5
7	1	13.1	Н5
8	1	1.2, 13.2	Н5
9	1	1.2, 11.1	Н8
10	1	12.2	Н3

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	2	4.3	P5
11 (b)	2	8.9	P7
11 (c)	2	1.2	P3
11 (d)	2	11.1	Н5
11 (e)	3	1.4, 6.3, 9.1	P4
11 (f)	2	1.1, 8.4, 13.5	P6, H5
11 (g)	2	13.1, 13.2	Н5
12 (a) (i)	2	6.2	P4
12 (a) (ii)	2	6.5	P4
12 (a) (iii)	2	2.3, 6.5	P4
12 (b) (i)	1	2.3	P4
12 (b) (ii)	2	2.4	P4
12 (c)	3	5.5	P4
12 (d) (i)	1	8.8, 12.4	H3, H5
12 (d) (ii)	2	11.1	H3, H5
13 (a) (i)	4	10.2, 10.4	Н6
13 (a) (ii)	2	10.5	Н6
13 (b) (i)	2	1.3, 9.5	P5
13 (b) (ii)	1	9.5	P5
13 (c) (i)	1	14.2	H4
13 (c) (ii)	2	14.2	H4, H5

Question	Marks	Content	Syllabus outcomes
13 (d)	3	11.4, 13.6	Н8
14 (a)	3	11.3	H5, H8
14 (b) (i)	2	7.5	H4, H5
14 (b) (ii)	1	7.5	H4, H5
14 (b) (iii)	1	7.5	H4, H5
14 (c) (i)	1	10.6	H4, H5
14 (c) (ii)	3	10.6	H4, H5
14 (d)	2	7.2, 8.2	P8, H5
14 (e)	2	7.1, 12.2	H3, H5
15 (a)	4	11.4	Н8
15 (b) (i)	2	3.3	Н5
15 (b) (ii)	3	3.3, 7.2, 12.2	H3, H5
15 (c) (i)	2	2.3, 2.5	Н5
15 (c) (ii)	2	2.3, 2.5	Н5
15 (c) (iii)	2	2.3, 2.5	Н5
16 (a) (i)	1	14.3	H4
16 (a) (ii)	2	14.3	H4, H5
16 (a) (iii)	2	4.2, 10.5	H4, H5, H6
16 (a) (iv)	3	12.5, 14.3	H4, H5
16 (b) (i)	2	12.5, 14.1	Н5
16 (b) (ii)	2	4.1, 12.5	Н5
16 (b) (iii)	1	1.3, 14.2	Н3
16 (b) (iv)	2	9.1, 12.5, 14.2	H5, H7