

2017 HSC Mathematics Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	A
2	D
3	С
4	A
5	В
6	D
7	В
8	A
9	С
10	A

Section II

Question 11 (a)

Criteria	Marks
Provides correct solution	2
Recognises a conjugate surd, or equivalent merit	1

Sample answer:

$$\frac{2}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}$$

$$=\frac{2(\sqrt{5}+1)}{(\sqrt{5})^2-1^2}$$

$$=\frac{2\left(\sqrt{5}+1\right)}{5-1}$$

$$=\frac{2(\sqrt{5}+1)}{4}$$

Question 11 (b)

Criteria	Marks
Provides correct answer	1

$$\int (2x+1)^4 dx$$

$$=\frac{(2x+1)^5}{2(5)}+c$$

$$=\frac{(2x+1)^5}{10}+c$$

Question 11 (c)

Criteria	Marks
Provides correct derivative	2
Attempts to use the quotient rule, or equivalent merit	1

Sample answer:

$$\frac{d}{dx} \left(\frac{\sin x}{x}\right) \qquad u = \sin x$$

$$= \frac{x(\cos x) - \sin x(1)}{x^2} \qquad \frac{du}{dx} = \cos x$$

$$= \frac{x\cos x - \sin x}{x^2} \qquad v = x$$

$$= \frac{du}{dx} = \cos x$$

$$= \frac{du}{dx} = \cos x$$

Question 11 (d)

Criteria	Marks
Provides correct derivative	2
Attempts to use the product rule, or equivalent merit	1

$$\frac{d}{dx}(x^3 \times \ln x) \qquad u = x^3$$

$$= x^3 \times \frac{1}{x} + 3x^2 \times \ln x \qquad \frac{du}{dx} = 3x^2$$

$$= x^2 + 3x^2 \times \ln x \qquad \frac{dv}{dx} = \frac{1}{x}$$

Question 11 (e) (i)

	Criteria	Marks
Ī	Provides correct answer	1

Sample answer:

$$A = \frac{1}{2}ab\sin c$$

$$= \frac{1}{2} \times 6 \times 6 \times \sin 30^{\circ}$$

$$= \frac{1}{2} \times 36 \times \frac{1}{2}$$

$$\therefore$$
 Area = 9 cm²

Question 11 (e) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

Shaded area = Area of sector AOB – Area of $\triangle OAB$

$$= \frac{\pi}{12} (6^2) - 9$$
$$= \frac{36\pi}{12} - 9$$

$$\therefore \text{Area} = (3\pi - 9) \text{ cm}^2$$

Question 11 (f)

Criteria	Marks
Provides correct equation	2
Identifies the vertex, or equivalent merit	1

Sample answer:

$$v = (2, 1)$$

$$pt = (0, 4)$$

$$(x - h)^{2} = 4a(y - k)$$

$$(x - 2)^{2} = 4a(y - 1)$$

$$(0 - 2)^{2} = 4a(4 - 1)$$

$$4 = 4a(3)$$

$$4 = 12a$$

$$a = \frac{1}{3}$$

$$\therefore (x - 2)^{2} = \frac{4}{3}(y - 1)$$

Question 11 (g)

Criteria	Marks
Provides correct solution	2
Attempts to deal with the absolute value, or equivalent merit	1

Sample answer:

$$+(3x-1) = 2$$
 $-(3x-1) = 2$
 $3x-1 = 2$ $-3x+1 = 2$
 $3x = 3$ $-3x = 1$
 $x = 1$ $x = -\frac{1}{3}$

|3x-1|=2

Question 11 (h)

Criteria	Marks
Provides correct domain	2
Attempts to obtain an inequality, or equivalent merit	1

Sample answer:

$$f(x) = \sqrt{3 - x}$$

$$3-x \ge 0$$

$$3 \ge x$$

Question 12 (a)

Criteria	Marks
Provides correct solution	2
• Finds the slope of the curve at the given point, or equivalent merit	1

$$y = x^2 + 4x - 7$$

$$y' = 2x + 4$$

when
$$x = 1$$
 $y' = 2 + 4 = 6$

$$\therefore m = 6$$

$$y - y_1 = m(x - x_1)$$

$$y - -2 = 6(x - +1)$$

$$y = 6x - 8$$

Question 12 (b)

Criteria	Marks
Provides correct solution	3
• Obtains the primitive of an integrand for the volume, involving the square of the function, or equivalent merit	2
Obtains an integral for the volume involving the square of the function, or equivalent merit	1

$$V = \pi \int_{-2}^{2} \left(\sqrt{16 - 4x^2} \right)^2 dx$$
$$= 2\pi \int_{0}^{2} \left(16 - 4x^2 \right) dx$$
$$= 2\pi \left[16x - \frac{4x^3}{3} \right]_{0}^{2}$$
$$= 2\pi \left[32 - \frac{32}{3} - 0 + 0 \right]$$

Volume =
$$\frac{128\pi}{3}$$
 units³

Question 12 (c)

Criteria	Marks
Provides correct solution	3
• Finds the three correct equations and attempts to solve, or equivalent merit	2
• Finds a valid equation linking a and d, or equivalent merit	1

Question 12 (d) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

Point A (-4, 0) to the line y = x - 2

$$x-y-2=0$$

$$a=1 b=-1 c=-2$$

Perpendicular distance
$$= \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$$

$$= \frac{\left| 1 \times -4 + -1 \times 0 - 2 \right|}{\sqrt{1^2 + (-1)^2}}$$

$$= \frac{\left| -4 - 2 \right|}{\sqrt{2}} = \frac{6}{\sqrt{2}}$$

$$= \frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{6\sqrt{2}}{2}$$

$$= 3\sqrt{2}$$

Question 12 (d) (ii)

Criteria	Marks
Provides correct solution	2
• Finds the length of <i>DC</i> , or equivalent merit	1

Sample answer:

$$A = \frac{1}{2}(a+b)h$$

$$h = 3\sqrt{2}$$
 and one length $(AB) = 5\sqrt{2}$

Other length is distance
$$CD = \sqrt{(3-0)^2 + (1--2)^2}$$

$$= \sqrt{9+9}$$

$$= \sqrt{18}$$

$$= 3\sqrt{2}$$

So
$$A = \frac{1}{2} (5\sqrt{2} + 3\sqrt{2}) \times 3\sqrt{2}$$

$$= \frac{1}{2} \times 8\sqrt{2} \times 3\sqrt{2}$$
$$= \frac{24 \times 2}{2}$$

∴ Area = 24 units^2

Question 12 (e) (i)

Criteria	Marks
Provides correct answer	1

$$P ext{ (even number)} = \frac{2}{5}$$

Question 12 (e) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

Probability (at least 1 even number)

= 1 – Probability (all odd numbers)

$$=1-\frac{3}{5}\times\frac{3}{5}\times\frac{3}{5}$$

$$=\frac{98}{125}$$

Question 12 (e) (iii)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$P \text{ (even, odd, odd)} = \frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}$$
$$= \frac{18}{5}$$

Question 12 (e) (iv)

Criteria	Marks
Provides correct answer	1

P (exactly one even) =
$$3 \times \frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}$$

= $\frac{54}{125}$

Question 13 (a)

Criteria	Marks
Provides correct solution	3
Attempts to expand each term and evaluate the cosine term, or equivalent merit	2
Correctly uses the cosine rule, or equivalent merit	1

Sample answer:

Using cosine rule:

$$13^2 = (x+4)^2 + (x-4)^2 - 2(x+4)(x-4)\cos 60^\circ$$

$$169 = x^{2} + 8x + 16 + x^{2} - 8x + 16 - 2(x^{2} - 16) \times \frac{1}{2}$$
$$= 2x^{2} + 32 - x^{2} + 16$$

$$= x^2 + 48$$

$$121 = x^2$$

$$\therefore x = \pm \sqrt{121}$$
$$= \pm 11$$

But x - 4 > 0 since it is a length

So
$$x > 4$$

$$\therefore x = 11$$

Question 13 (b) (i)

Criteria	Marks
Provides correct solution	4
• Determines the <i>x</i> -coordinates of the two stationary points and determines the nature of one of them, or equivalent merit	3
• Obtains x-values of the stationary points, or equivalent merit	2
• Differentiates and sets $\frac{dy}{dx} = 0$, or equivalent merit	1

Sample answer:

$$y = 2x^{3} + 3x^{2} - 12x + 7$$

$$\frac{dy}{dx} = 6x^{2} + 6x - 12$$

$$= 6(x^{2} + x - 2)$$

$$\frac{d^{2}y}{dx^{2}} = 6(2x + 1)$$

For stationary point, $\frac{dy}{dx} = 0$

$$\therefore x^2 + x - 2 = 0$$

$$x = \frac{-1 \pm \sqrt{1^2 - 4(-2)}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= 1 \text{ or } -2$$

When
$$x = 1$$
, $y = 2(1)^3 + 3(1)^2 - 12(1) + 7$
= 0
$$\frac{d^2y}{dx^2} = 6(2(1) + 1) = 18 > 0$$

- :. Concave up
- \therefore (1, 0) is a local minimum.

When
$$x = -2$$
, $y = 2(-2)^3 + 3(-2)^2 - 12(-2) + 7$
= 27
$$\frac{d^2y}{dx^2} = 6(2(-2) + 1) = -18 < 0$$

- :. Concave down
- \therefore (-2, 27) is a local maximum.

Question 13 (b) (ii)

Criteria	Marks
Provides correct sketch	2
Sketches a cubic curve, or equivalent merit	1

Sample answer:

Question 13 (b) (iii)

Criteria	Marks
Provides correct answer	1

Sample answer:

From the graph, $\frac{dy}{dx}$ is positive when x > 1 or x < -2

Question 13 (c)

Criteria	Marks
Provides correct solution	2
• Obtains the quadratic in m, or equivalent merit	1

Sample answer:

$$m = t^{\frac{1}{3}}, \quad m^2 = \left(t^{\frac{1}{3}}\right)^2 = t^{\frac{2}{3}}$$
$$t^{\frac{2}{3}} + t^{\frac{1}{3}} - 6 = 0$$
$$\therefore \quad m^2 + m - 6 = 0$$
$$(m - 2)(m + 3) = 0$$

$$\therefore m = 2$$
 or $m = -3$

$$\therefore t^{\frac{1}{3}} = 2 \text{ or } t^{\frac{1}{3}} = -3$$

$$t = 8 \qquad t = -27$$

Question 13 (d)

Criteria	Marks
Provides correct solution	3
Provides correct primitive, or equivalent merit	2
Attempts to integrate the expression, or equivalent merit	1

Sample answer:

$$\frac{dV}{dt} = \frac{2t}{1+t^2} \quad \text{when } t = 0, \ V = 0$$

$$V = \int_0^{10} \frac{2t}{1+t^2} dt$$

$$= \left[\ln(1+t^2) \right]_0^{10}$$

$$= \ln(101) - \ln 1$$

$$= \ln(101) \quad (\div 4.615...)$$

After 10 seconds the volume of water in the tank is ln101 litres.

Question 14 (a)

Criteria	Marks
Provides correct sketch	3
Indicates correct amplitude and period, or equivalent merit	2
Indicates correct amplitude, or equivalent merit	1

Sample answer:

Question 14 (b) (i)

Criteria	Marks
Provides correct answer	1

Question 14 (b) (ii)

Criteria	Marks
Provides correct solution	2
Attempts to apply Simpson's rule, or equivalent merit	1

Sample answer:

$$\int_{0}^{\frac{\pi}{3}} \cos x \, dx = \frac{\frac{\pi}{3} - 0}{6} \left[\cos(0) + 4\cos\left(\frac{\pi}{6}\right) + \cos\frac{\pi}{3} \right]$$
$$= \frac{\pi}{18} \left[1 + 4\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{2} \right]$$
$$= \frac{\pi}{18} \left[\frac{3}{2} + \frac{4\sqrt{3}}{2} \right]$$
$$= \frac{\pi}{18} \left[\frac{3 + 4\sqrt{3}}{2} \right]$$

Question 14 (b) (iii)

Criteria	Marks
Provides correct answer	1

$$\frac{\sqrt{3}}{2} \doteq \frac{\pi}{18} \left[\frac{3 + 4\sqrt{3}}{2} \right]$$

$$18\sqrt{3} \doteq \pi \left[3 + 4\sqrt{3} \right]$$

$$\pi \doteq \frac{18\sqrt{3}}{3+4\sqrt{3}}$$

Question 14 (c) (i)

I	Criteria	Marks
	Provides correct solution	1

Sample answer:

$$C(t) = Ae^{kt}$$

$$\frac{dC}{dt} = k \times Ae^{kt}$$

= kC, as required

Question 14 (c) (ii)

Criteria	Marks
Provides correct solution	2
Recognises the significance of the half-life, or equivalent merit	1

$$t = 5730$$
 $C = \frac{1}{2}C_0$

$$C(0) = A$$

$$\frac{1}{2}C(0) = \frac{1}{2}A$$

$$\therefore \frac{1}{2}A = Ae^{5730k}$$

$$\ln\frac{1}{2} = 5730k$$

$$k = \ln\left(\frac{1}{2}\right) \div 5730$$

$$k = -0.00012$$

Question 14 (c) (iii)

Criteria	Marks
Provides correct solution	2
Obtains a correct exponential equation for t, or equivalent merit	1

$$C(t) = 0.9A t = ?$$

$$0.9A = Ae^{kt}$$

$$\ln(0.9) = kt$$

$$t = \frac{\ln(0.9)}{k}$$

$$t = \frac{\ln(0.9)}{k}$$
 or using $k = -0.00012$
 $= \frac{\ln(0.9)}{-0.00012...}$ $t = 878.0042...$
 $\approx 870.9777...$ $t = 880 \text{ years}$
 $= 870 \text{ years}$

Question 14 (d)

Criteria	Marks
Provides correct solution	3
• Obtains an expression for the area involving <i>k</i> with integration complete, or equivalent merit	2
• Attempts to use integration to find the area of the shaded region, or equivalent merit	1

Area =
$$2\int_0^1 (k(1-x^2)-2k(x^2-1))dx$$

= $2\int_0^1 (3k-3kx^2)dx$
= $6k\int_0^1 (1-x^2)dx$
= $6k\left[x-\frac{1}{3}x^3\right]_0^1$
= $4k$

$$\therefore 4k = 8$$

$$k = 2$$

Question 15 (a)

Criteria	Marks
Provides correct solution	3
• Finds a correct equation for x, or equivalent merit	2
Makes some progress	1

Sample answer:

 $\triangle ABC$, $\triangle ACD$, $\triangle ADE$ are congruent (given)

So angles $\angle BAC$, $\angle CAD$, and $\angle DAE$, are equal (corresponding angles in congruent triangles)

 $\angle AED$ is the base angle of an isosceles triangle.

 $2 \times \angle AED + x = 180$ (angle sum of a triangle)

So
$$\angle AED = \frac{180 - x}{2}$$

$$\angle AED + \angle EAB = 180$$
 (cointerior angle $-AB \parallel ED$)

$$\frac{180 - x}{2} + 3x = 180$$

$$180 - x + 6x = 360$$

$$5x = 180$$

$$x = 36$$

Question 15 (b) (i)

Criteria	Marks
Provides correct solution	2
• Obtains $M_1 = X(1.0035) - 2500$, or equivalent merit	1

Sample answer:

$$\begin{split} M_1 &= X \times \left(1 + \frac{0.042}{12}\right) - 2500 \\ &= X(1.0035) - 2500 \\ M_2 &= \left(\left(X(1.0035) - 2500\right) + X\right)1.0035 - 2500 \\ &= X(1.0035)^2 + X(1.0035) - 2500(1.0035) - 2500 \\ &= X\left(1.0035^2 + 1.0035\right) - 2500(1.0035 + 1) \end{split}$$

Question 15 (b) (ii)

Criteria	Marks
Provides correct solution	3
• Obtains an expression for M_{48} with at least one series summed,	2
or equivalent merit	2
• Obtains an expression for M_{48} , or equivalent merit	1

Sample answer:

At the end of 4 years = 48 months, $M_{48} = 80000$

$$X(1.0035^{48} + \dots + 1.0035) - 2500(1.0035^{47} + \dots + 1) = 80\,000$$

$$X\left[\frac{1.0035(1.0035^{48} - 1)}{0.0035}\right] - \frac{2500(1.0035^{48} - 1)}{0.0035} = 80\,000$$

$$X\left[\frac{1.0035(1.0035^{48} - 1)}{0.0035}\right] = 210\,421.2054$$

$$52.351X = 240\,421.2054$$

$$X = 4019.42$$

Question 15 (c) (i)

Criteria	Marks
Provides correct solution	2
Finds correct primitive, or equivalent merit	1

Sample answer:

Particle 1 when t = 0 $x_1 = 0$ $v_1 = 3$ and $a_1 = 6t + e^{-t}$

 v_1 is a primitive of a_1

$$v_1 = \frac{6t^2}{2} + -e^{-t} + k$$
$$= 3t^2 - e^{-t} + k$$

When
$$t = 0$$
 $v_1 = 3$

$$3 = 3 \times 0 - e^0 + k$$

$$= -1 + k$$

$$4 = k$$

So
$$v_1 = 3t^2 + 4 - e^{-t}$$

Question 15 (c) (ii)

Criteria	Marks
Provides correct solution	2
Equates velocities, or equivalent merit	1

$$v_{1} = v_{2}$$

$$3t^{2} + 4 - e^{-t} = 6t + 1 - e^{-t}$$

$$3t^{2} - 6t + 3 = 0$$

$$3(t^{2} - 2t + 1) = 0$$

$$3(t - 1)^{2} = 0$$

$$t = 1$$

Question 15 (c) (iii)

Criteria	Marks
Provides correct solution	3
Obtains cubic equation in t, or equivalent merit	2
• Finds x_1 or x_2 , or equivalent merit	1

Sample answer:

So C = -1

Show that the particles do not meet for t > 0

$$v_1 = 3t^2 + 4 - e^{-t}$$
 so $x_1 = \frac{3t^3}{3} + 4t + e^{-t} + C$
When $t = 0$ $x_1 = 0$
 $0 = 0 + 0 + 1 + C$

$$x_1 = t^3 + 4t + e^{-t} - 1$$

$$v_2 = 6t + 1 - e^{-t}$$

$$x_2 = \frac{6t^2}{2} + t + e^{-t} + k$$

$$= 3t^2 + t + e^{-t} + k$$

$$= 3t^{2} + t + e^{3} + k$$
When $t = 0$ $x_{2} = 0$

$$3 \times 0^{2} + 0 + 1 + k = 0$$

$$k = -1$$

So
$$x_2 = 3t^2 + t + e^{-t} - 1$$

If particles meet $x_1 = x_2$

So
$$t^{3} + 4t + e^{-t} - 1 = 3t^{2} + t + e^{-t} - 1$$
$$t^{3} - 3t^{2} + 4t - t = 0$$
$$t^{3} - 3t^{2} + 3t = 0$$
$$t(t^{2} - 3t + 3) = 0$$
$$t = 0 \quad \text{(at origin)}$$
or
$$t = \frac{3 \pm \sqrt{9 - 4 \times 3}}{2}$$

9 - 12 < 0 so quadratic has no solutions.

 \therefore particles do not meet for t > 0

(alternative method)

Since both particles start at the origin,

$$v_1 = 3t^2 + 3 + (1 - e^{-t})$$

$$= 3t^2 + 3 + (v_2 - 6t)$$

$$= v_2 + 3(t^2 - 2t + 1)$$

$$= v_2 + 3(t - 1)^2$$

So P_1 is never slower than P_2 .

They start together. P₁ starts faster than P₂ and never gets slower.

- \therefore P₁ will always be ahead of P₂
- \therefore The particles never meet (t > 0).

Question 16 (a) (i)

Criteria	Marks
Provides correct solution	1

Sample answer:

By Pythagoras' theorem

$$AE = \sqrt{x^2 + 25}$$

$$DE = 9 - x$$
, so
 $BE = \sqrt{49 + (9 - x)^2}$

$$\therefore L = \sqrt{x^2 + 25} + \sqrt{49 + (9 - x)^2}$$

Question 16 (a) (ii)

Criteria	Marks
Provides correct solution	3
• Obtains $\frac{x}{\sqrt{x^2 + 25}} = \frac{9 - x}{\sqrt{49 + (9 - x)^2}}$, or equivalent merit	2
• Correctly differentiates $\sqrt{x^2 + 25}$, or equivalent merit	1

$$\frac{dL}{dx} = \frac{x}{\sqrt{x^2 + 25}} - \frac{(9-x)}{\sqrt{49 + (9-x)^2}}$$

$$\frac{dL}{dx} = 0 \implies \frac{x}{\sqrt{x^2 + 25}} = \frac{9 - x}{\sqrt{49 + (9 - x)^2}}$$

$$\Rightarrow \sin \alpha = \sin \beta$$

since in
$$\triangle ACE$$
, $\sin \alpha = \frac{CE}{AE}$

$$=\frac{x}{\sqrt{25+x^2}}$$

in
$$\triangle BDE$$
, $\sin \beta = \frac{ED}{EB}$
$$= \frac{9-x}{\sqrt{(9-x)^2 + 49}}$$

Question 16 (a) (iii)

Criteria	Marks
Provides correct solution	2
Makes some progress	1

Sample answer:

$$\sin \alpha = \sin \beta \implies \alpha = \beta$$
 (since α , β acute)

$$\therefore$$
 $\triangle ACE ||| \triangle BDE$ (equiangular)

$$\therefore \frac{x}{5} = \frac{9 - x}{7}$$

$$\Rightarrow 7x = 45 - 5x$$

$$x = \frac{45}{12}$$

$$= 3\frac{3}{4}$$

Question 16 (a) (iv)

Criteria	Marks
Provides correct solution	1

Sample answer:

From parts (ii) and (iii) there is only one value of x for which $\frac{dL}{dx} = 0$ for 0 < x < 9

For
$$x = 0$$

$$\frac{dL}{dx} = 0 - \frac{9}{\sqrt{130}} < 0$$

For
$$x = 9$$

$$\frac{dL}{dx} = \frac{9}{\sqrt{106}} > 0$$

Hence, since $x = 3\frac{3}{4}$ lies between x = 0 and x = 9 then this must be a minimum.

Question 16 (b)

Criteria	Marks
Provides correct solution	3
• Obtains $-1 < 1 - \frac{a}{2} < 1$, or equivalent merit	2
• Recognises $\frac{a}{1-r} = 2$, or equivalent merit	1

$$S_{\infty} = \frac{a}{1 - r} = 2$$

$$\therefore \quad \frac{a}{2} = 1 - r$$

$$\therefore \qquad r = 1 - \frac{a}{2}$$

Now
$$|r| < 1$$
 so $\left| 1 - \frac{a}{2} \right| < 1$

$$-1 < 1 - \frac{a}{2} < 1$$

$$-2 < 2 - a < 2$$

$$2 > a - 2 > -2$$

$$\therefore 0 < a < 4$$

Question 16 (c) (i)

Criteria	Marks
Provides correct solution	3
• Shows $BD = DE$, or equivalent merit	2
• Shows $\triangle BDM$ is similar to $\triangle BEC$, or equivalent merit	1

Sample answer:

Since BM = MC (given)

then BD = DE (equal intercept)

 $\therefore BD = DA + AE$ and BD = DA + AC (given)

ie DA + AE = DA + AC $\therefore AE = AC$

Hence, $\triangle ACE$ is isosceles (two equal sides)

Question 16 (c) (ii)

Criteria	Marks
Provides correct solution	2
• Shows $\angle FAC = \angle ACE$, or equivalent merit	1

Sample answer:

Since $AF \mid\mid DM$ and

 $EC \mid\mid DM$ then

 $AF \mid\mid EC$

 $\angle BAF = \angle AEC$ (corresponding angles, parallel lines $AF \parallel EC$)

 $\angle AEC = \angle ACE$ (base angles of isosceles triangle ACE)

 $\angle ACE = \angle CAF$ (alternate angles, parallel lines AF and EC)

So $\angle BAF = \angle CAF$, ie AF bisects $\angle BAC$

2017 HSC Mathematics Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	6.2	P5
2	1	1.3	P3
3	1	12.5	Н3
4	1	10.4	Н6
5	1	12.2	Н3
6	1	4.3	P4
7	1	5.2	P3
8	1	4.4, 6.4	P4
9	1	10.8	Н7
10	1	14.3	Н6

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	2	1.1	P3
11 (b)	1	11.2	Н5
11 (c)	2	8.8, 13.5	Н5
11 (d)	2	8.8, 12.5	Н3
11 (e) (i)	1	2.3	P4
11 (e) (ii)	1	13.1	Н5
11 (f)	2	9.5	P5
11 (g)	2	1.2	P4
11 (h)	2	4.1	P5
12 (a)	2	8.4	P6, P7
12 (b)	3	11.4	Н8
12 (c)	3	7.1	Н5
12 (d) (i)	1	6.5	P4
12 (d) (ii)	2	6.8	Н5
12 (e) (i)	1	3.1	Н5
12 (e) (ii)	1	3.3	Н5
12 (e) (iii)	1	3.2	Н5
12 (e) (iv)	1	3.3	Н5
13 (a)	3	1.4, 5.5	P3, P4
13 (b) (i)	4	10.2	Н6
13 (b) (ii)	2	10.5	Н6

Question	Marks	Content	Syllabus outcomes
13 (b) (iii)	1	10.1	Н6
13 (c)	2	9.4	P4
13 (d)	3	14.1	Н5
14 (a)	3	13.3	Н5
14 (b) (i)	1	13.6	Н5
14 (b) (ii)	2	11.3	Н5
14 (b) (iii)	1	11.3	P3, H5
14 (c) (i)	1	14.2	Н5
14 (c) (ii)	2	14.2	Н5
14 (c) (iii)	2	14.2	Н5
14 (d)	3	11.4	Н8
15 (a)	3	2.4–6	H2, H5
15 (b) (i)	2	7.5	Н5
15 (b) (ii)	3	7.5	Н5
15 (c) (i)	2	14.3	Н5
15 (c) (ii)	2	14.3	Н5
15 (c) (iii)	3	9.2, 14.3	Н5
16 (a) (i)	1	2.3	P4
16 (a) (ii)	3	10.6	Н5
16 (a) (iii)	2	2.3, 2.6	P4, H5
16 (a) (iv)	1	10.6	Н5
16 (b)	3	7.3	Н5
16 (c) (i)	3	2.4–6	H2, H5
16 (c) (ii)	2	2.4–6	H2, H5