

2018 HSC Mathematics Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	В
2	С
3	Α
4	D
5	D
6	С
7	С
8	D
9	В
10	D

Section II

Question 11 (a)

	Criteria	Marks
•	Provides correct solution	2
•	Attempts to use $3-\sqrt{2}$, or equivalent merit	1

Sample answer:

$$\frac{3}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}} = \frac{9-3\sqrt{2}}{9-2}$$
$$= \frac{9-3\sqrt{2}}{7}$$

Question 11 (b)

Criteria	Marks
Provides correct solution	2
• Obtains $-3x > 9$, or equivalent merit	1

Sample answer:

$$1-3x > 10$$

$$\frac{-3x}{-3} > \frac{9}{-3}$$

$$x < -3$$

Question 11 (c)

	Criteria	Marks
•	Provides correct solution	2
•	Attempts to factorise numerator, or equivalent merit	1

$$\frac{8x^3 - 27y^3}{2x - 3y} = \frac{(2x)^3 - (3y)^3}{2x - 3y}$$
$$= \frac{(2x - 3y)(4x^2 + 6xy + 9y^2)}{2x - 3y}$$
$$= 4x^2 + 6xy + 9y^2$$

Question 11 (d) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$a + 2d = 8$$
 ①

$$a + 19d = 59$$
 ②

②-①:
$$\frac{17d}{17} = \frac{51}{17}$$

 $d = 3$

Question 11 (d) (ii)

Criteria	Marks
Provides correct solution	2
Finds first term, or equivalent merit	1

Sample answer:

$$d = 3$$
, so $a + 2(3) = 8$

$$a + 6 = 8$$

$$a = 2$$

$$a + 49d = 2 + 49 \times 3$$

$$= 2 + 147$$

$$= 149$$

Question 11 (e)

Criteria	Marks
Provides correct solution	2
Provides correct primitive, or equivalent merit	1

$$\int_0^3 e^{5x} dx = \left[\frac{1}{5} e^{5x} \right]_0^3$$
$$= \frac{1}{5} \left(e^{15} - e^0 \right)$$

$$=\frac{1}{5}(e^{15}-1)$$

Question 11 (f)

Criteria	Marks
Provides correct derivative	2
Attempts to use product rule, or equivalent merit	1

Sample answer:

$$\frac{d}{dx}(x^2 \tan x) = x^2 \times \sec^2 x + \tan x \times (2x)$$
$$= x(x \sec^2 x + 2\tan x)$$

Question 11 (g)

Criteria	Marks
Provides correct derivative	2
Attempts to use quotient rule, or equivalent merit	1

Sample answer:

$$\frac{d}{dx} \left(\frac{e^x}{x+1} \right) = \frac{(x+1) \times e^x - e^x \times 1}{(x+1)^2}$$
$$= \frac{xe^x + e^x - e^x}{(x+1)^2}$$
$$= \frac{xe^x}{(x+1)^2}$$

Question 12 (a) (i)

Criteria	Marks
Provides correct answer	1

$$\angle ABC = 50^{\circ} + 60^{\circ}$$
$$= 110^{\circ}$$

Question 12 (a) (ii)

Criteria	Marks
Provides correct solution	2
Correctly substitutes into cosine rule, or equivalent merit	1

$$d^{2} = 320^{2} + 190^{2} - 2(320)(190)\cos 110^{\circ}$$

$$d = \sqrt{320^{2} + 190^{2} - 2(320)(190)\cos 110^{\circ}}$$

$$d = 424.3697084$$

$$d = 420 \text{ km}$$

Question 12 (b)

Criteria	Marks
Provides correct solution	3
• Obtains slope at $x = \frac{\pi}{6}$, or equivalent merit	2
Obtains correct derivative, or equivalent merit	1

Sample answer:

$$y = \cos 2x$$

$$y' = -2\sin 2x$$

$$M_T = -2\sin\left(\frac{2\pi}{6}\right)$$

$$M_T = -2\sin\left(\frac{\pi}{3}\right)$$

$$= -\sqrt{3} \text{ at } x = \frac{\pi}{6}$$
when $x = \frac{\pi}{6}$, $y = \cos\left(\frac{2\pi}{6}\right)$

$$= \frac{1}{2}$$

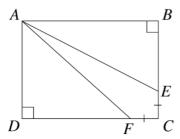
Equation of tangent

$$y - \frac{1}{2} = -\sqrt{3}\left(x - \frac{\pi}{6}\right)$$
$$y - \frac{1}{2} = -\sqrt{3}x + \frac{\sqrt{3}\pi}{6}$$
$$y = -\sqrt{3}x + \frac{\sqrt{3}\pi}{6} + \frac{1}{2}$$

Question 12 (c) (i)

Criteria	Marks
Provides correct proof	2
• Observes that $AD = AB$, with a reason, or equivalent merit	1

Sample answer:



In $\triangle ADF$ and $\triangle ABE$

$$AD = AB$$
 (equal sides of square $ABCD$)
 $\angle ADF = \angle ABE = 90^{\circ}$ (equal angles of square $ABCD$)
 $DF = DC - FC$ (equal sides of square $ABCD$, $FC = EC$ given)
 $= BC - EC$
 $= BE$

$$\therefore \triangle ADF \equiv \triangle ABE \tag{SAS}$$

Question 12 (c) (ii)

Criteria	Marks
Provides correct solution	2
• Finds area of $\triangle ADF$, or equivalent merit	1

Area square =
$$14^2$$

= 196 cm^2

Area triangle
$$ABE = \frac{1}{2} \times 14 \times 10$$

= 70 cm²

Area
$$AECF = 196 - (2 \times 70)$$

= 56 cm²

Question 12 (d) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$x = \frac{t^3}{3} - 2t^2 + 3t$$

$$\dot{x} = t^2 - 4t + 3$$

when t = 0

$$\dot{x} = 3 \text{ m/s}$$

Question 12 (d) (ii)

Criteria	Marks
Provides correct solution	2
• Attempts to solve $v = 0$, or equivalent merit	1

Sample answer:

Need $\dot{x} = 0$

$$t^2 - 4t + 3 = 0$$

$$(t-3)(t-1) = 0$$

$$t = 3, t = 1$$

Question 12 (d) (iii)

Criteria	Marks
Provides correct solution	2
• Finds the time when $a = 0$, or equivalent merit	1

$$\ddot{x} = 2t - 4$$

$$2t - 4 = 0$$

$$2t = 4$$

$$t = 2$$

when
$$t = 2$$

$$x = \frac{2^3}{3} - 2(2)^2 + 3(2)$$

$$=\frac{2}{3}$$
 m

Question 13 (a) (i)

Criteria	Marks
Provides correct solution	3
Finds the stationary points, or equivalent merit	2
• Attempts to solve $\frac{dy}{dx} = 0$, or equivalent merit	1

Sample answer:

$$y = 6x^{2} - x^{3}$$
$$y' = 12x - 3x^{2}$$
$$y'' = 12 - 6x$$

stationary points occur when y' = 0

$$12x - 3x^{2} = 0$$
$$3x(4 - x) = 0$$
$$3x = 0$$
$$4 - x = 0$$
$$x = 0$$
$$x = 4$$

stationary points at (0, 0) and (4, 32)

when
$$x = 0$$
, $y'' = 12 > 0$:: minimum at $(0,0)$
 $x = 4$, $y'' = -12 < 0$:: maximum at $(4,32)$

Question 13 (a) (ii)

Criteria	Marks
Provides correct solution	2
• Shows second derivative vanishes at $x = 2$, or equivalent merit	1

Sample answer:

Point of inflexion when y'' = 0

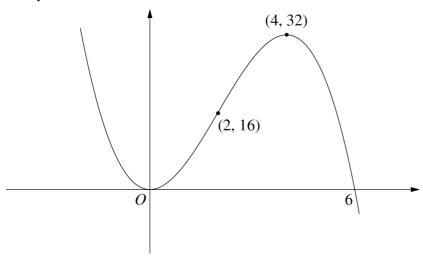
$$12 - 6x = 0$$
$$6x = 12$$
$$x = 2$$

when
$$x = 2 - \varepsilon$$
, $y'' > 0$
when $x = 2 + \varepsilon$, $y'' < 0$ \therefore (2, 16) is a point of inflextion

Question 13 (a) (iii)

Criteria	Marks
Provides correct sketch	2
Provides curve with correct shape, or equivalent merit	1

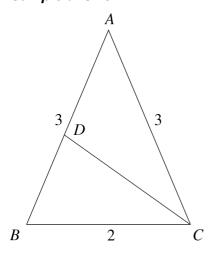
Sample answer:



Question 13 (b) (i)

Criteria	Marks
Provides correct proof	2
Finds one pair of congruent angles, or equivalent merit	1

Sample answer:



In $\triangle ABC$ and $\triangle CBD$ angle *B* is common.

Both triangles are isosceles so $\angle CDB = \angle CBD = \angle ABC = \angle ACB$ hence $\triangle ABC$ is similar to $\triangle CBD$ (AA).

Question 13 (b) (ii)

Criteria	Marks
Provides correct solution	2
Attempts to use ratios to find a correct equation involving BD, or equivalent merit	1

Sample answer:

$$AD = AB - BD$$

From part (i)

$$\frac{BD}{BC} = \frac{BC}{BA}$$

$$\frac{BD}{2} = \frac{2}{3}$$

$$BD = \frac{4}{3}$$

$$AD = 3 - \frac{4}{3}$$

$$= \frac{5}{3}$$

Question 13 (c) (i)

Criteria	Marks
Provides correct solution	2
• Obtains $184 = 92e^{50k}$, or equivalent merit	1

$$p(t) = 92e^{kt}$$
when $t = 50$, $p = 184$

$$92e^{50k} = 184$$

$$e^{50k} = 2$$

$$50k = \ln(2)$$

$$k = \frac{1}{50}\ln(2)$$

$$= 0.01386294361$$

$$= 0.0139$$

Question 13 (c) (ii)

	Criteria	Marks
•	Provides correct solution	2
•	Uses $t = 110$, or equivalent merit	1

Sample answer:

When
$$t = 110$$
, $p = ?$
 $p = 92e^{110 \times 0.0139}$
 $= 424.4476077$
 $\doteqdot 424$

Question 14 (a) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$A = \frac{1}{2} \times 3 \times 6 \times \sin 60^{\circ}$$
$$= \frac{9\sqrt{3}}{2} \text{ square units}$$

Question 14 (a) (ii)

Criteria	Marks
Provides correct solution	2
Finds the area of another triangle, or equivalent merit	1

$$\frac{1}{2} \times 3 \times x \times \sin 30^{\circ} + \frac{1}{2} \times 6 \times x \times \sin 30^{\circ} = \frac{9\sqrt{3}}{2}$$
$$\frac{3x}{2} + 3x = 9\sqrt{3}$$
$$\frac{9x}{2} = 9\sqrt{3}$$
$$x = 2\sqrt{3}$$

Question 14 (b)

	Criteria	Marks
•	Provides correct solution	3
•	Obtains correct integral for volume in terms of y only, or equivalent merit	2
•	Attempts to use an integral of the form $\pi \int x^2 dy$, or equivalent merit	1

Sample answer:

$$y = x^{4} + 1$$

$$x^{4} = y - 1$$

$$x^{2} = \sqrt{y - 1}$$

$$V = \pi \int_{1}^{10} x^{2} dy$$

$$= \pi \int_{1}^{10} (y - 1)^{\frac{1}{2}} dy$$

$$= \pi \left[\frac{2(y - 1)^{\frac{3}{2}}}{3 \times 1} \right]_{1}^{10}$$

$$= \frac{2\pi}{3} \left(9^{\frac{3}{2}} - 0 \right)$$

$$= \frac{2\pi}{3} \times 27$$

Volume = 18π cubic units

Question 14 (c)

Criteria	Marks
Provides correct solution	3
Obtains correct discriminant, or equivalent merit	2
Obtains correct derivative, or equivalent merit	1

Sample answer:

$$f(x) = x^3 + kx^2 + 3x - 5$$

$$f'(x) = 3x^2 + 2kx + 3$$

For stationary points need f'(x) = 0

$$\triangle = (2k)^2 - 4 \times 3 \times 3$$

$$=4k^2-36$$

For no stationary points

$$\triangle$$
 < 0

$$4k^2 - 36 < 0$$

$$k^2 - 9 < 0$$

$$(k+3)(k-3) < 0$$

∴
$$-3 < k < 3$$

Question 14 (d) (i)

Criteria	Marks
Provides correct answer	1

$$T_1 = 2^1 + 1$$

$$T_2 = 2^2 + 2$$

$$T_3 = 2^3 + 3$$

$$= 11$$

Question 14 (d) (ii)

Criteria	Marks
Provides correct solution	2
Correctly sums one series, or equivalent merit	1

Sample answer:

$$(2^{1}+1)+(2^{2}+2)+(2^{3}+3)+\cdots+(2^{n}+n)$$

$$=(2^{1}+2^{2}+2^{3}+\cdots+2^{n})+(1+2+3+\cdots+n)$$
For $2+2^{2}+2^{3}+\cdots+2^{n}$

$$a=2, r=2, n=20$$

$$S_{20}=\frac{2(2^{20}-1)}{2-1}$$

$$=2097150$$
For $1+2+3+\cdots+n$

$$a=1, d=1, n=20$$

$$S_{20}=\frac{20}{2}(1+20)$$

$$=210$$

$$\therefore \text{Total}=2097150+210$$

$$=2097360$$

Question 14 (e) (i)

Criteria	Marks
Provides correct answer	1

Probability =
$$1 - 0.9 \times 0.95$$

= $1 - 0.855$
= 0.145

Question 14 (e) (ii)

Criteria	Marks
Provides correct solution	2
Demonstrates knowledge of complementary events, or equivalent merit	1

Sample answer:

Probability =
$$0.5 \times 0.9 \times 0.9 + 0.5 \times 0.95 \times 0.95$$

= $0.405 + 0.45125$
= 0.85625

Question 15 (a) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

Let
$$t = 0$$

$$L(0) = 12 + 2\cos\left(\frac{2\pi \times 0}{366}\right)$$

$$= 12 + 2\cos 0$$

$$= 12 + 2$$

$$= 14$$

Day is 14 hours long

Question 15 (a) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$-1 \le \cos\left(\frac{2\pi t}{366}\right) \le 1$$
$$-2 \le 2\cos\left(\frac{2\pi t}{366}\right) \le 2$$

Shortest length of daylight when $2\cos\left(\frac{2\pi t}{366}\right) = -2$

$$L(t) = 12 - 2 = 10$$
 hours

Shortest length of daylight is 10 hours.

Question 15 (a) (iii)

Criteria	Marks
Provides correct solution	2
• Obtains $\cos\left(\frac{2\pi t}{366}\right) = -\frac{1}{2}$, or equivalent merit	1

Sample answer:

$$11 = 12 + 2\cos\left(\frac{2\pi t}{366}\right)$$

$$-1 = 2\cos\left(\frac{2\pi t}{366}\right)$$

$$-\frac{1}{2} = \cos\left(\frac{2\pi t}{366}\right)$$

$$\frac{2\pi t}{366} = \frac{2\pi}{3} \quad \text{or} \quad \frac{4\pi}{3}$$

$$\frac{2\pi t}{366} = \frac{2\pi}{3}$$

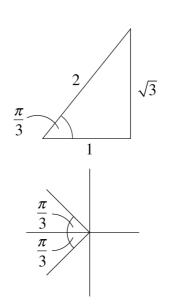
$$t = \frac{366}{3}$$

$$t = 122 \text{ days after 21 December}$$

$$\frac{2\pi t}{366} = \frac{4\pi}{3}$$

$$t = \frac{2 \times 366}{3}$$

= 244 days after 21 December



Question 15 (b)

Criteria	Marks
Provides correct solution	3
Obtains correct equation involving logarithms, or equivalent merit	2
Obtains correct equation involving integrals, or equivalent merit	1

$$\int_{0}^{k} \frac{dx}{x+3} + \int_{k}^{45} \frac{dx}{x+3} = \int_{0}^{45} \frac{dx}{x+3}$$

$$\int_{0}^{k} \frac{dx}{x+3} = \int_{k}^{45} \frac{dx}{x+3}$$

$$2\int_{0}^{k} \frac{dx}{x+3} = \int_{0}^{45} \frac{dx}{x+3}$$

$$2 \left[\ln(x+3) \right]_0^k = \left[\ln(x+3) \right]_0^{45}$$

$$2 \left[\ln(k+3) - \ln 3 \right] = \ln(48) - \ln 3$$

$$\frac{(k+3)^2}{9} = 16$$

$$(k+3)^2 = 144$$

$$k+3=\pm 12 \qquad (k>0)$$

$$k + 3 = 12$$

$$k = 9$$

Question 15 (c) (i)

Criteria		
Provides correct solution	2	
Obtains correct integral for the area, or equivalent merit	1	

$$A = \int_{0}^{3} 2x - (x^{3} - 7x) dx$$

$$A = \int_0^3 2x - x^3 + 7x \, dx$$

$$= \int_0^3 9x - x^3 dx$$

$$= \left[\frac{9x^2}{2} - \frac{x^4}{4} \right]_0^3$$

$$=\left(\frac{9\times9}{2}-\frac{81}{4}\right)-(0-0)$$

$$=\frac{81}{2}-\frac{81}{4}$$

$$=\frac{81}{4}$$

Question 15 (c) (ii)

Criteria	Marks
Provides correct solution	2
Uses correct function values in Simpson's Rule, or equivalent merit	1

$$\int_{0}^{3} 9x - x^{3} dx = \frac{3 - 0}{6} \left[f(0) + 4f\left(\frac{3}{2}\right) + f(3) \right]$$

$$= \frac{1}{2} \left[0 + 4 \left[\frac{9 \times 3}{2} - \left(\frac{3}{2}\right)^{3} \right] + 0 \right]$$

$$= \frac{1}{2} \times 4 \times \left(\frac{27}{2} - \frac{27}{8} \right)$$

$$= 2 \times \left(\frac{4 \times 27}{8} - \frac{27}{8} \right)$$

$$= 2 \times \frac{81}{84}$$

$$= \frac{81}{4}$$

Question 15 (c) (iii)

Criteria	Marks
Provides correct solution	2
• Obtains the equation $3x^2 - 7 = 2$, or equivalent merit	1

Sample answer:

P is on curve $y = x^3 - 7x$ where tangent to curve is parallel to y = 2x.

$$\frac{dy}{dx} = 3x^2 - 7$$
 slope of line = 2

want slope of tangent to be 2

$$3x^{2} - 7 = 2$$

$$3x^{2} = 9$$

$$x^{2} = 3$$

$$x = \pm\sqrt{3} \quad \text{want } x > 0 \text{ so}$$

$$x = +\sqrt{3}$$

when
$$x = +\sqrt{3}$$
 $y = x^3 - 7x = (\sqrt{3})^3 - 7 \times \sqrt{3}$
= $3\sqrt{3} - 7\sqrt{3}$
= $-4\sqrt{3}$

Coordinates of *P* are $(\sqrt{3}, -4\sqrt{3})$

Question 15 (c) (iv)

Criteria	Marks
Provides correct solution	2
Finds the distance from <i>p</i> to the line, or equivalent merit	1

Sample answer:

Perpendicular distance from P to y = 2x

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|2\sqrt{3} - 1 \times (-4\sqrt{3})|}{\sqrt{2^2 + (-1)^2}}$$

$$= \frac{|2\sqrt{3} + 4\sqrt{3}|}{\sqrt{5}}$$

$$= \frac{6\sqrt{3}}{\sqrt{5}}$$

distance from (0, 0) to (3, 6)

$$d = \sqrt{(3-0)^2 + (6-0)^2}$$

$$= \sqrt{9+36}$$

$$= \sqrt{45}$$

$$= 3\sqrt{5}$$

Area of triangle =
$$\frac{1}{2} \times \frac{6\sqrt{3}}{\sqrt{5}} \times 3\sqrt{5}$$

= $9\sqrt{3}$

Alternative solution

Take vertical distance between *P* and the line as base of two triangles.

When
$$x = \sqrt{3}$$
, $y = 2x \Rightarrow y = 2\sqrt{3}$

Vertical distance is $2\sqrt{3} - 4\sqrt{3} = 6\sqrt{3}$

$$A_1 = \frac{1}{2}b \times h_1 = \frac{1}{2} \times 6\sqrt{3} \times \sqrt{3}$$

$$A_2 = \frac{1}{2}b \times h_2 = \frac{1}{2} \times 6\sqrt{3} \times \left(3 - \sqrt{3}\right)$$

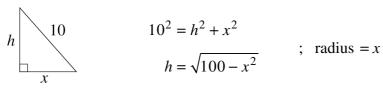
$$A = \frac{1}{2} \times 6\sqrt{3} \times \left[\sqrt{3} + \left(3 - \sqrt{3}\right)\right]$$

$$= 3\sqrt{3} \times 3 = 9\sqrt{3}$$

Question 16 (a) (i)

Criteria	Marks
Provides correct proof	1

$$V = \frac{1}{3}\pi r^2 h$$



$$10^2 = h^2 + x^2$$
$$h = \sqrt{100 - x^2}$$

$$radius = x$$

$$V = \frac{1}{3}\pi x^2 \sqrt{100 - x^2}$$

Question 16 (a) (ii)

Criteria	Marks
Provides correct solution	2
Correctly applies product rule, or equivalent merit	1

$$V = \frac{1}{3}\pi x^2 \sqrt{100 - x^2}$$

$$u = \frac{1}{3}\pi x^2 \qquad V = \left(100 - x^2\right)^{\frac{1}{2}}$$

$$\frac{du}{dx} = \frac{2}{3}\pi x$$

$$\frac{dV}{dx} = \frac{1}{2} \times -2x \times \left(100 - x^2\right)^{-\frac{1}{2}}$$

$$= \frac{-x}{\sqrt{100 - x^2}}$$

$$\frac{dV}{dx} = \frac{-\pi x^3}{3\sqrt{100 - x^2}} + \frac{2\pi x\sqrt{100 - x^2}}{3}$$

$$= \frac{-\pi x^3 + 2\pi x \left(100 - x^2\right)}{3\sqrt{100 - x^2}}$$

$$= \frac{-\pi x^3 + 200\pi x - 2\pi x^3}{3\sqrt{100 - x^2}}$$

$$=\frac{200\pi x - 3\pi x^3}{3\sqrt{100 - x^2}}$$

$$=\frac{\pi x \left(200 - 3x^2\right)}{3\sqrt{100 - x^2}}$$

Question 16 (a) (iii)

Criteria	Marks
Provides correct solution	3
• Verifies that $x = \frac{10\sqrt{6}}{3}$ gives the maximum, or equivalent merit	2
Finds the values of <i>x</i> at the stationary points, or equivalent merit	1

Sample answer:

$$\frac{dV}{dx} = 0$$

$$\frac{\pi x \left(200 - 3x^2\right)}{3\sqrt{100 - x^2}} = 0$$

$$\pi x \left(200 - 3x^2\right) = 0$$

$$\pi x = 0$$
 , $200 - 3x^2 = 0$
 $x = 0$ $3x^2 = 200$

Not a solution,
$$x = \pm \sqrt{\frac{200}{3}}$$

$$x > 0$$

$$x = \frac{10\sqrt{2}}{\sqrt{3}}$$

$$x = \frac{10\sqrt{6}}{3}$$

Nature?

х	8	$\frac{10\sqrt{6}}{3}$	9
$\frac{dV}{dx}$	11.1701	0	-92.974

 $\therefore \text{ Maximum volume when } x = \frac{10\sqrt{6}}{3}$

$$\ell = r\theta$$

$$\ell = 10\theta$$

$$\therefore 2\pi r = 10\theta$$

$$2\pi x = 10\theta$$

$$\theta = \frac{\pi x}{5}$$

Therefore

$$\theta = \frac{\pi}{5} \times \frac{10\sqrt{6}}{3}$$

$$\theta = \frac{2\sqrt{6}\pi}{3}$$

Question 16 (b) (i)

Criteria	Marks
Provides correct solution	2
Enumerates some of the possibilities, or equivalent merit	1

Sample answer:

Cannot win if there are no numbers between the first two.

Numbers between

	1	2	3	4	5	6
1	×	×	1	2	3	4
2	×	×	×	1	2	3
3	1	×	×	×	1	2
4	2	1	×	×	×	1
5	3	2	1	×	×	×
6	4	3	2	1	×	×

So there are 16 rolls that cannot win before third roll.

Probability =
$$\frac{16}{36} = \frac{4}{9}$$

Question 16 (b) (ii)

Criteria	Marks
Provides correct solution	2
Correctly deals with one case, or equivalent merit	1

Sample answer:

If 1 number between

probability of win is
$$\frac{1}{36} \times \frac{1}{6}$$

2 number between

probability is
$$\frac{1}{36} \times \frac{2}{6}$$

3 number between

probability is
$$\frac{1}{36} \times \frac{3}{6}$$

4 number between

probability is
$$\frac{1}{36} \times \frac{4}{6}$$

$$P(win) = 8 \times \frac{1}{36} \times \frac{1}{6} + 6 \times \frac{1}{36} \times \frac{2}{6} + 4 \times \frac{1}{36} \times \frac{3}{6} + 2 \times \frac{1}{36} \times \frac{4}{6}$$

$$= \frac{1}{216} (8 + 12 + 12 + 8)$$

$$= \frac{40}{216}$$

$$= \frac{5}{27}$$

Question 16 (c) (i)

Criteria	Marks
Provides correct proof	1

Sample answer:

$$A_1 = 300 000(1.04) - P$$

$$A_2 = A_1(1.04) - P(1.05)$$

$$= 300 000(1.04)^2 - P(1.04) - P(1.05)$$

$$= 300 000(1.04)^2 - P[(1.04) + (1.05)]$$

Question 16 (c) (ii)

Criteria	Marks
Provides correct proof	1

$$A_3 = A_2(1.04) - P(1.05)(1.05)$$

$$= 300\ 000(1.04)^3 - P(1.04)^2 - P(1.04)(1.05) - P(1.05)^2$$

$$= 300\ 000(1.04)^3 - P[(1.04)^2 + (1.04)(1.05) + (1.05)^2]$$

Question 16 (c) (iii)

Criteria	Marks
Provides correct solution	3
• Sums the series for A_n , or equivalent merit	2
• Obtains an expression for A_n , or equivalent merit	1

Sample answer:

Continuing this pattern

$$A_n = 300\,000(1.04)^n - P\Big[(1.04)^{n-1} + (1.04)^{n-2}(1.05)^1 + (1.04)^{n-3}(1.05)^2 + \dots + (1.05)^{n-1}\Big]$$

The second term is a geometric series with *n* terms, $a = (1.04)^{n-1}$ and $r = \frac{1.05}{1.04} = \frac{105}{104}$

$$=300\ 000(1.04)^{n}-P(1.04)^{n-1}\left[\frac{\left(\frac{105}{104}\right)^{n}-1}{\left(\frac{105}{104}\right)-1}\right]$$

$$= 300\ 000(1.04)^n - P(1.04)^{n-1} \frac{\left[\left(\frac{105}{104} \right)^n - 1 \right]}{\left(\frac{1}{104} \right)}$$

$$=300\,000(1.04)^n - 104P(1.04)^{n-1} \left[\left(\frac{105}{104} \right)^n - 1 \right]$$

For money to be in the account we require $A_n > 0$

ie
$$300\,000(1.04)^n > 100P(1.04)^n \left[\left(\frac{105}{104}\right)^n - 1 \right]$$

$$\therefore \left(\frac{105}{104}\right)^n - 1 < \frac{300\,000}{100P}$$

$$\therefore \left(\frac{105}{104}\right)^n < 1 + \frac{3000}{P}$$

2018 HSC Mathematics Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	1.1	P3
2	1	6.7	P4
3	1	6.1	P4
4	1	6.5	P4
5	1	12.5, 13.5	H5
6	1	3.3	H5
7	1	11.4	H8
8	1	9.3	P4
9	1	10.8	H6, H7
10	1	13.3, 13.6	H5

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	2	1.1	P3
11 (b)	2	1.2	P3
11 (c)	2	1.3	P3
11 (d) (i)	1	7.1	H5
11 (d) (ii)	2	7.1	H5
11 (e)	2	12.5	H3, H5
11 (f)	2	8.8, 13.5	H5
11 (g)	2	8.8, 12.4	H3, H5
12 (a) (i)	1	5.4	P4
12 (a) (ii)	2	5.5	P4
12 (b)	3	6.2, 13.5	H5
12 (c) (i)	2	2.3, 2.4	P4
12 (c) (ii)	2	2.3, 2.5	H5
12 (d) (i)	1	14.3	H5
12 (d) (ii)	2	14.3	H5
12 (d) (iii)	2	14.3	H5
13 (a) (i)	3	10.2	H6
13 (a) (ii)	2	10.2	H6
13 (a) (iii)	2	10.5	H6
13 (b) (i)	2	2.3	P4
13 (b) (ii)	2	2.3	P4
13 (c) (i)	2	14.2	H3, H4
13 (c) (ii)	2	14.2	H3, H4

Question	Marks	Content	Syllabus outcomes
14 (a) (i)	1	5.3, 5.5	P3
14 (a) (ii)	2	5.3, 5.5	P3
14 (b)	3	11.4	Н8
14 (c)	3	8.9, 9.1, 9.2, 10.2	P4, P5, P7, H6
14 (d) (i)	1	7.5	H5
14 (d) (ii)	2	7.5	H5
14 (e) (i)	1	3.3	H5
14 (e) (ii)	2	3.3	H5
15 (a) (i)	1	13.2	H4
15 (a) (ii)	1	13.2	H4
15 (a) (iii)	2	5.3, 13.2	H4
15 (b)	3	11.4, 12.2, 12.5	H8
15 (c) (i)	2	11.4	Н8
15 (c) (ii)	2	11.3	Н8
15 (c) (iii)	2	10.7	Н6
15 (c) (iv)	2	6.5	P4
16 (a) (i)	1	2.3	P3
16 (a) (ii)	2	8.8	P7
16 (a) (iii)	3	10.6, 13.1	H5
16 (b) (i)	2	3.1, 3.2, 3.3	H5
16 (b) (ii)	2	3.1, 3.2, 3.3	H5
16 (c) (i)	1	7.5	H5
16 (c) (ii)	1	7.5	H5
16 (c) (iii)	3	7.5	H5