

Mathematics Advanced

HSC Marking Feedback 2021

Question 11

Students should:

- know how to solve equations involving fractions
- find a common denominator or multiply correctly to eliminate the denominator
- apply inverse operations to solve the equation.

In better responses, students were able to:

- establish a common denominator or multiply each term by 2
- carefully demonstrate each step of their solution
- use substitution to check a solution.

Areas for students to improve include:

- correctly finding the common denominator of algebraic fractions
- working with equations which have two terms in the numerator of a fraction
- applying inverse operations to solve equations.

Question 12 (a)

Students should:

- use SOHCAHTOA in right-angled triangles
- establish the correct trigonometric ratio to use
- evaluate trigonometric expressions using angles and side lengths
- use a calculation to find a numerical solution in degrees.

- identify the correct trigonometric ratio and substitute the values and pronumerals correctly into the ratio
- manipulate the ratio to calculate the required unknown side length
- use the sine rule to calculate the length of XY
- have their calculator in degree mode.

- using the Reference Sheet to ensure that the trigonometric ratio is correct
- identifying which side is the hypotenuse and which is the adjacent
- showing adequate steps in their working to reflect their reasoning.

Question 12 (b)

Students should:

- find the radius of the semi-circle
- find the area of the semi-circle
- find the area of the triangle
- find the shaded area by calculating the area of the semicircle minus the area of the triangle.

In better responses, students were able to:

- demonstrate all calculations necessary to find the solution
- show working for lengths not provided in the diagram but used in their solution
- identify the perpendicular sides of ΔXYZ .

Areas for students to improve include:

- identifying the correct area formulae supplied on the Reference Sheet
- recognising the difference between a semicircle, a segment, a sector, to correctly calculate the area
- recognising the perpendicular sides of a triangle when using $A = \frac{1}{2}bh$, or the correct angle when using $A = \frac{1}{2}ab\sin C$
- carrying all digits through to the final result before rounding.

Question 13

Students should:

- use the product rule to differentiate a product involving a trigonometric function
- show the substitution of $\frac{\pi}{2}$ into the derivative
- evaluate the derivative in exact form to give the gradient of the tangent.

In better responses, students were able to:

- understand that $y = x \tan x$ is a product of two functions of x
- show u, u', v, v'
- show the substitution of $\frac{\pi}{3}$ into their derivative
- use $\sec^2 x = \frac{1}{\cos^2 x}$
- understand that exact answers may contain surds and π
- evaluate $\frac{1}{\left(\frac{1}{2}\right)^2}$.

- recognising when to use the product rule
- being familiar with radians and the exact trig values for them
- finding the exact value of the square of a reciprocal trigonometric ratio
- working with fractions with a fractional denominator
- using radians confidently in the context of trigonometric calculus
- using the Reference Sheet to find correct derivatives and trigonometric ratios
- showing all working, particularly the substitution step.

Question 14

Students should:

- select the equation from the Reference Sheet for the sum of an arithmetic series
- substitute values from the question into the formula to form an equation
- solve the equation to find the common difference.

In better responses, students were able to:

- identify the correct variables and substitute into the correct formulae
- solve the equation efficiently, showing all necessary steps.

Areas for students to improve include:

- knowing the terminology for the components of an arithmetic series
- using general algebra skills in expanding brackets and solving equations.

Question 15

Students should:

- express the integrand using index notation
- use the Reference Sheet to find standard integrals
- show the substitution into their primitive
- use a calculator to find a simplified numerical solution
- differentiate the anti-derivative to check that it matches the given integrand.

In better responses, students were able to:

- correctly use calculus notation
- express the integrand in terms of a fractional power
- correctly substitute limits into primitives
- evaluate numerical expressions involving a fractional index
- evaluate using a calculator.

- appropriately manipulating the numerator and denominator of the integral
- distinguishing between the chain rule and the reverse chain rule
- integrating functions involving roots and fractional indices
- simplifying fractions involving a fractional denominator

- explicitly showing substitutions into the anti-derivative with the use of brackets
- evaluating the resulting anti-derivative to give the fully simplified numerical solution
- developing a habit of checking the anti-derivative of integrals by differentiating.

Question 16

Students should:

- use calculus to determine the first derivative
- state that f(x) is increasing when f'(x) > 0
- solve the resulting quadratic inequation by graphing or using a sign diagram
- set working out clearly and logically
- state the domain.

In better responses, students were able to:

- state the condition for an increasing function
- find the first derivative
- factorise the derivative to find the *x*-intercepts
- solve the quadratic inequation by graphing a concave down parabola
- solve the quadratic inequation by testing critical points on the number line
- find the domain using set notation or interval notation.

Areas for students to improve include:

- differentiating cubic functions
- recognising that the first derivative corresponds to the gradient of a function
- associating an increasing function with f'(x) > 0
- solving quadratic equations and inequations with a negative leading term
- distinguishing between the graph of a function and the signs of f(x), f'(x) and f''(x)
- expressing the domain using interval notation or inequality signs.

Question 17 (a) (i)

Students should:

- establish the meaning of the question by reading carefully
- substitute the given value into the correct equation
- use a calculator to find the solution and round correctly.

In better responses, students were able to:

- show their substitution into an equation
- show an approximate answer
- show a correctly rounded answer.

- taking care with substitution
- taking care with rounding

refraining from writing a bald answer only.

Question 17 (a) (ii)

Students should:

- use the context to describe both the rise and the run of the gradient
- use the given graph for guidance
- write concisely and legibly.

In better responses, students were able to:

- describe the relationship between the variables using the names of the variables in the given context and the values of the rise and the run
- give clear indication of both data sets increasing and decreasing according to the graph
- give specific value changes.

Areas for students to improve include:

- using the correct terms to describe the relationship between the variables
- recognising the difference between gradient and correlation
- comprehending the information given in both written and mathematical forms to address the question effectively.

Question 17 (b)

Students should:

draw a conclusion and justify it using the information provided about correlation.

In better responses, students were able to:

- compare the strength of the correlation of the graphs in (a) and (b)
- understand that r = -0.897 represents a stronger relationship than r = -0.494
- keep explanations simple.

Areas for students to improve include:

- using the appropriate terms in the right context
- providing a clear and succinct mathematical justification for their conclusion
- drawing on the information provided in the question
- understanding that questions worth one mark require a simple reason.

Question 18

Students should:

- use the sine ratio to find an angle in a triangle
- show substitution into the sine rule
- calculate the acute angle
- apply the ambiguous case to find the obtuse angle.

In better responses, students were able to:

- demonstrate substitution into the sine rule
- use $\frac{\sin A}{a} = \frac{\sin B}{b}$ to find an angle
- use a calculator to find the acute angle
- calculate the obtuse angle by using $\sin \theta = \sin(180 \theta)$.

Areas for students to improve include:

- selecting the appropriate trigonometric ratio
- applying trigonometric ratios of angles of any magnitude
- solving an equation involving fractions.

Question 19

Students should:

- calculate the intercepts of the hyperbolic function on the x- and y-axis
- identify the horizontal and vertical asymptotes
- carefully sketch the hyperbolic graph showing the asymptotes and intercepts.

In better responses, students were able to:

- draw a hyperbolic graph labelling intercepts and asymptotes
- sketch a hyperbolic shape with the branches approaching the asymptotes
- demonstrate an understanding of vertical and horizontal shift of a basic hyperbola.

Areas for students to improve include:

- labelling essential features on a graph
- carefully drawing the hyperbolic branches without crossing the asymptotes
- taking care to avoid arithmetic errors with positive and negative values
- using a ruler to draw the axes and asymptotes on a sufficiently large diagram.

Question 20

Students should:

- find the intersecting points between two functions
- consider the given domain has two solutions
- answer using radian measure.

- form the equation $2 \sin 4x = 1$
- solve for 4x in the domain $0 \le 4x \le \pi$
- solve for x in the domain $0 \le x \le \frac{\pi}{4}$
- solve the trigonometric equation within the specified domain
- show all working to find the related angles.

- finding solutions satisfying the given domain
- appreciating that the question is asking for values of x rather than the number of solutions
- developing confidence in working entirely in radian measure when solving trigonometric equations
- appreciating that when a question refers to a graph, it does not necessarily imply that a graphical solution is required
- understanding that sketching a graph will find the number of solutions.

Question 21

Students should:

- identify that a horizontal and a vertical dilation are required
- deduce that y = f(2x) dilates the function horizontally with scale factor $\frac{1}{2}$
- deduce that y = 4f(x) dilates the function vertically with scale factor 4
- sketch a cubic graph showing the transformed x-intercepts and turning points.

In better responses, students were able to:

- understand the geometrical significance of the 4 and the 2 in the new function
- calculate the horizontal and vertical dilation
- appreciate that the origin is maintained as a maximum turning point after dilations
- compress the cubic curve by factor $\frac{1}{2}$ to transform (6, y) to (3, y)
- stretch the cubic curve by factor 4 to transform (x, -8) to (x, -32)
- draw successive graphs representing progressive transformations
- use appropriate scale to show x- and y-values
- draw a continuous cubic curve and label turning points on the graph.

- separating the transformation into horizontal and vertical components, rather than attempting both simultaneously
- distinguishing between dilations and translations in the horizontal and vertical directions
- understanding horizontal dilations affect the abscissa
- understanding vertical dilations affect the ordinate
- systematically focusing on the critical points provided in a graph
- labelling critical points on a graph drawn not to scale
- developing a systematic method for applying transformations to sketch functions
- developing an understanding of the manipulation of simple functions by using graphing software.

Question 22 (a)

Students should:

- read the whole question carefully to understand what is represented by the data in the given table
- use the given information to calculate the desired probability
- understand the relationship between the probability of two z-scores and the position of the z-scores on the bell curve
- subtract the probability value for a *z*-score of 0.1 from the probability value of a *z*-score of 0.5 using the table provided.

In better responses, students were able to:

- understand that the shaded area represents the probability that a random variable lies between the mean and the z-score
- understand how probabilities interact with z-scores
- identify the correct probability values to use from the table
- use the given graph depicting the normal distribution to find the difference between the two probabilities.

Areas for students to improve include:

- connecting the probability between two z-scores and the position of the z-scores on the bell curve
- understanding that the probability between two z-scores requires a subtraction
- practising questions with z-scores and the normal distribution to be familiar with the language used in probability questions
- appreciating that worded questions provide necessary information
- reading and understanding worded questions that examine course content using simple scenarios
- understanding that questions worth one mark require a simple step.

Question 22 (b)

Students should:

- use the Reference Sheet to find the z-score formula
- calculate the z-score
- use the z-score to find the corresponding probability from the given table
- understand the connection between the results provided in the table and the shaded area under the normal distribution bell curve
- draw the bell curve to understand the value of their probability in terms of the position of the mean
- find the expected number by multiplying the probability by 1000.

- identify each variable in the question: x, σ, μ
- calculate the z-score
- generate a probability from a z-score given a table of probabilities

- recognise that the right side of the normal distribution represents the required probability
- exclude half the scores below the mean
- multiply the probability by 1000.

- calculating a z-score
- understanding what each variable (x, σ, μ) represents
- equating a normal distribution to a continuous probability distribution that is symmetrical on both sides of the mean
- connecting z-scores with probability of scores being above or below that z-score
- understanding what is represented by the empirical rule and the area under a normal distribution curve
- linking probability to the area under a normal distribution bell curve
- avoiding the empirical rule when presented with a table of probabilities
- reading the question again to check if it has been answered.

Question 23

Students should:

- substitute the given values into the equation and solve to find the value of b
- differentiate the resulting equation
- set $\frac{dP}{dt}$ equal to -30 and solve by applying the logarithmic laws appropriately to solve for t.

In better responses, students were able to:

- demonstrate excellent command of index rules to calculate b
- accurately find the derivative of $P = 5000(2)^{-\frac{t}{10}}$
- appreciate the need to set $\frac{dP}{dt}$ equal to -30 as the rate was decreasing
- apply the logarithmic laws appropriately to solve for t.

Areas for students to improve include:

- familiarising themselves with the derivative of $f(x) = ab^x$ where $b \neq e$
- identifying that a decrease means that the value of the differential is negative
- solving equations with negative indices
- improving skills in manipulating logarithms and solving logarithmic equations.

Question 24

Students should:

- determine the area of a shaded region by solving indefinite integrals
- divide the shaded region into two shapes
- calculate the area of each shape using integration or geometric ideas
- label the diagram to assist with calculations.

- interpret the shaded area as a combination of a triangle and area under a curve
- integrate the hyperbolic function between x=2 and x=4 to obtain the logarithmic expression
- substitute upper and lower boundaries into the logarithmic expression
- add the two areas to find the area of the shaded region.

- understanding the primitive function of $y = \frac{3}{x-1}$ is logarithmic
- showing substitution of upper and lower boundaries into the anti-derivative.

Question 25

Students should:

- identify the interest rate per period from the table of future values
- apply the compound interest formula
- convert a percentage into a decimal.

In better responses, students were able to:

- identify the correct interest rate of 8.2132 from the table
- multiply this rate by \$1000
- deduce that the final two years did not require a second interest rate from the table
- apply two years of compound interest at 1.25% per annum.

Areas for students to improve include:

- practising using a future value table
- avoiding generating a financial series when a future value table is provided
- distinguishing between an annuity and compound interest
- converting percentage rates to a decimal.

Question 26 (a)

Students should:

- find y'(t) and solve y'(t) = 0 to find the time when maximum height occurs
- or use $t = \frac{-b}{2a}$ to find time of max height
- substitute the found value of t into y(t) to find maximum height.

In better responses, students were able to:

- interpret the question and perform the algebra needed to produce the correct solution
- find time from a derivative and substitute it into the original equation to find the maximum height
- show clear working and substitution.

- using a calculator to evaluate substitutions
- practising calculus differentiation

- understanding that maximum height occurs when y'(t) = 0
- reading the question carefully and understanding that finding *t* is a step towards the solution, not the required answer.

Question 26 (b)

Students should:

- solve y(t) = 0 to find the times the particle will hit the ground
- understand that time must be positive
- substitute the exact value of t into y'(t) to find velocity
- simplify, leaving the answer in simplified surd form.

In better responses, students were able to:

- simplify and use surds carefully
- understand that solving y(t) = 0 would provide the time immediately before hitting the ground
- substitute into the quadratic formula to determine value of t, recognising t > 0
- correctly substitute into derivative and expanded brackets to get correct answer
- recognise they needed to keep the square root answer for *t*, as the question requested, rather than changing to a decimal/approximation.

Areas for students to improve include:

- taking greater care when applying the quadratic formula, simplifying surds and expanding expressions
- practising differentiation, factorisation and substitution
- practising various methods of solving quadratic equations.

Question 27 (a)

Students should:

- state the amplitude of the function is 400
- calculate the period of the function is 24 hours
- draw a sine curve starting at the origin
- label the amplitude and related time.

In better responses, students were able to:

- sketch a half-period of the curve showing the amplitude
- label horizontal and vertical axes
- sketch a smooth curve depicting a sine wave
- use the space provided to sketch a sufficiently large graph.

- sketching a sine curve with correct concavity
- finding values for time in radian measure
- developing an understanding of period and amplitude when sketching trigonometric functions.

Question 27 (b)

Students should:

- set up the integral as $\int_a^b 400 \sin\left(\frac{\pi t}{12}\right) dt$
- use the Reference Sheet as a guide to set up the integration step
- state the additional coefficient of $-\frac{12}{\pi}$
- show the order of substitutions of the upper and lower boundaries.

In better responses, students were able to:

- rearrange the integral $\int_a^b 400 \sin\left(\frac{\pi t}{12}\right) dt = 400 \int_a^b \sin\left(\frac{\pi t}{12}\right) dt$
- find the correct primitive function
- show the substitution of a and b.

Areas for students to improve include:

- showing every step of working
- understanding integration result is the primitive function value after substitution of limits
- using the formula $\int_a^b f(x)dx = F(b) F(a)$
- taking care when multiplying and dividing with fractions.

Question 27 (c)

Students should:

- substitute a = 3 and E = 300 into the equation in part (b)
- solve the trigonometric equation using radians
- answer to the nearest minute.

In better responses, students were able to:

- substitute the correct values for a and E into the equation given in part (b)
- perform arithmetic and trigonometric calculations to find b = 3 hours 57 minutes
- subtract 3 hours to find the minimum waiting time.

- carefully reading the question to identify the appropriate substitutions
- equating the rate to P(t) and the energy to E(t)
- developing skills to solve resulting equations involving multiple trigonometric and arithmetic calculations
- practising algebraic manipulations of trigonometric equations
- using exact trigonometric ratios and simplified fractions when solving complex trigonometric equations.

Question 27 (d)

Students should:

- interpret their graph of P(t) from part (a) to formulate an answer
- state that P(t) has a maximum charging capacity when t = 6 hours, which is more than the charging power at t = 3 hours.

In better responses, students were able to:

- refer to the graph of P(t) to indicate a maximum power of 400 when t = 6 hours
- conclude that it would take less time to charge at t = 3
- use the maximum turning point at t = 6 to compare it to the answer found in part (c).

Areas for students to improve include:

- referring to the original graph to compare the times
- stating a reason to support their answer in relation to the graph
- referencing the power in the graph rather than the sun.

Question 28 (a)

Students should:

- find the x-intercept for the function
- write the correct definite integral representing the area under the curve
- use the Reference Sheet when integrating a^x
- calculate the area by careful substitution of the limits into the anti-derivative
- check that their final answer matched the given value.

In better responses, students were able to:

- find the x-intercept efficiently without the need of logarithms
- able to use the Reference Sheet correctly to find the integral of base 2
- show all the steps in their working including the substitution of limits using brackets.

Areas for students to improve include:

- becoming more familiar with the integral other than base e offered on Reference Sheet
- using brackets as part of their worked solution of definite integrals
- knowing the processes involved in evaluating definite integrals.

Question 28 (b)

Students should:

- demonstrate an understanding of the reflections associated with replacing x with -x and y with -y
- demonstrate an understanding of translation to the right
- rule and label the axes
- clearly show the x-intercept and asymptote
- draw their graph carefully, taking up one third of a page.

In better responses, students were able to:

- correctly apply all the required transformations
- draw a small sketch for each of the transformations, then draw a finally sketch
- ensure their sketch shows all requested detail.

Areas for students to improve include:

- familiarising themselves with the transformations associated with changes to a function
- showing the x-intercept and asymptote and labelling their axes
- drawing clear graphs, making sure the graph extends past the axes
- including the asymptote in the transformations.

Question 28 (c)

Students should:

- recognise the question required the integral not area
- see the area in parts a and c are identical but just under the x-axis
- find the negative of the area from part (a)
- understand that 'hence' implies the use of previous parts of a question.

In better responses, students were able to:

- recognise that the answer was the negative of part (a)
- recognise that the amount of writing space and the 1-mark value means that there is not a lot of work involved.

Areas for students to improve include:

- understanding the difference between area and integrals
- understanding the difference between exact value and absolute value
- understanding that 'hence' means use a previous answer.

Question 29 (a)

Students should:

- show the development of calculations for A₁, A₂ and A₃
- ascertain if deposits are made at the beginning or end of the year
- calculate the values for A_1 , A_2 and A_3 .

- identify that the first payment of \$1000 did not accrue interest in the first year
- find the value of $A_1 = 6150
- apply the recurrence relation to generate $A_2 = A_1(1.03) + 1000$ before substituting A_1
- apply the recurrence relation to generate $A_3 = A_2(1.03) + 1000$ before substituting the expression for A_2 .

- differentiating between payments made at the beginning or end of a period
- developing a sequential pattern starting with A₁
- understanding a 'show' question requires systematic working out for A_1 , A_2 and A_3 .

Question 29 (b)

Students should:

- manually construct a reverse annuity with regular, equal contributions and interest compounding at the end of each period
- generate a series involving the first three terms of an annuity
- sum the resulting series using the geometric series formula
- resolve the equation to a zero balance
- solve the resulting logarithmic equation.

In better responses, students were able to:

- generate the first three amounts to find the series A_n
- use their series to create a general series for n terms
- use the substitution $A_n = 0$
- solve an exponential equation using algebraic properties of logarithms.

Areas for students to improve include:

- lacktriangledown relating a financial question involving regular deposits or withdrawals will generate a series with n terms
- following an established pattern to create a geometric series
- carefully identifying the number of terms in a geometric series
- solving complex exponential and logarithmic equations.

Question 30

Students should:

- understand the meaning of a cumulative distribution function
- extract the necessary information from the question for substitution into the cumulative distribution function
- solve the resulting exponential equation using logarithms.

In better responses, students were able to:

- write down a correct exponential equation using the information given
- solve the exponential equation correctly and efficiently using logarithms.

- understanding of cumulative distribution functions in a practical context
- solving exponential equations
- recognising the difference between F(x) and f(x)
- reading of questions.

Question 31

Students should:

- find the derivative function
- find the gradient at x = a
- use point gradient formula to find equation of tangent
- substitute (3, -8) into equation and solve for a
- substitute both values of a into equation of tangent to find the two equations required.

In better responses, students were able to:

- draw a diagram of the information
- clearly show each step of working
- show correct calculations for the gradient and coordinate substitution
- recognise the tangent equation in its different forms.

Areas for students to improve include:

- understanding what a tangent to a curve is
- drawing a sketch or model to visualise the problem
- demonstrating substitution steps clearly
- working with tangents using variables
- practising general algebra skills including expansions, brackets and simplifications
- practising simple differentiation, factorisation and substitution
- practising solving quadratic equations using factorising, completing the squares, and using the quadratic formula
- understanding how to use calculus to find the gradient of the tangent at any given point
- understanding how to use the point-gradient formula to find an equation.

Question 32

Students should:

- convert the female heights to z-scores
- understand how to use the empirical rule
- position the female heights on a normal distribution curve
- calculate the mean of female heights using the required number of standard deviations
- calculate the mean and standard deviation of male heights using the relationship given in the table
- use the mean and standard deviation to calculate the height of the selected male.

- use Table 1 to calculate z-scores
- label the normal distribution curve with the female heights
- find the mean of female heights
- use Table 2 to calculate the mean and standard deviation of male heights
- identify that the selected male is one standard deviation above the mean height for males

add the correct amount of standard deviations to the male mean.

Areas for students to improve include:

- using the empirical rule on the Reference Sheet to aid calculation
- comparing z-scores of different data sets to understand the connection between z-scores, μ and σ
- applying the empirical rule to a variety of problems
- practising worded problems to focus on key words
- checking the reasonableness of their answers.

Question 33 (a)

Students should:

- state the property of a probability density function $\int_0^6 f(x)dx = 1$
- correctly integrate $\int_0^6 \frac{Ax}{x^2+4} dx = \left[\left(\frac{A}{2} \right) \ln(x^2+4) \right]_0^6$ and set it equal to 1
- show the substitution of 6 and 0 into the integral
- solve the equation to find *A*, clearly showing the use of the logarithmic laws.

In better responses, students were able to:

- understand the relationship between probability density functions and integration
- clearly state that the integral is equal to 1
- use brackets in the expression for $ln(x^2 + 4)$ so that further substitution was accurate
- write an integral using fractions, and to maintain it in later steps
- show that $\ln 40 \ln 4 = \ln \frac{40}{4} = \ln 10$.

Areas for students to improve include:

- knowing that the area under a probability density function is equal to 1
- using the Reference Sheet to identify the correct integral
- integrating logarithms
- showing all working in a clear and organised manner.

Question 33 (b)

Students should:

- recognise that the mode is the global maximum of a probability density function
- find the derivative of the function using the quotient rule
- solve the derivative equal to 0 to find the x value that gives the maximum value of the function.

- use the quotient rule correctly and efficiently, without ignoring the constant
- recognise A was a constant and could multiply the differential and could be left as A until simplified
- find the maximum point by solving the equation with the numerator of the derivative equal

to zero.

Areas for students to improve include:

- ensuring that the 'A' value is included in the differential
- keeping both the constant and the denominator when using the quotient rule
- showing u, u', v, v' and showing substitution into the quotient rule
- solving equations with fractions equal to zero
- showing all steps of working to 'show' answer.

Question 33 (c)

Students should:

- recognise the link between this question and part (a)
- use the probability density function and the value of A to evaluate the integral from 0 to 2
- use integration resulting in a natural logarithmic function
- evaluate the integral from 0 to 2
- use logarithmic laws to simplify
- use change of base rule for logarithms.

In better responses, students were able to:

- write the definite integral correctly
- evaluate the definite integral correctly
- use logarithmic laws to simplify the definite integral correctly
- demonstrate the change of base law for $\frac{\ln 2}{\ln 10} = \log_{10} 2$.

Areas for students to improve include:

- understanding of probability density functions and integration
- evaluating definite integrals
- using logarithmic laws.

Question 33 (d)

Students should:

- find a z-score by interpreting the question using the information given
- use knowledge of the empirical approximations for normal functions
- identify conditional probability $P(IQ > 130 | \text{completes in} < 2 \text{ hours}) = \frac{P(IQ > 130 \cap X < 2)}{P(X < 2)}$
- find the probability needed for the numerator (80% of 2.5%)
- recognise the need to use the value given in part (c) for the denominator of the conditional probability fraction.

- recognise the question involves conditional probability
- use a diagram as an aid to find the percentage of the population above a z-score of 2
- find the probability of two events occurring

take and apply the value found in part (c) to conditional probability.

Areas for students to improve include:

- using the empirical values of normal distributions correctly
- recognising conditional probability statements
- applying probability in a complex situation involving conditional probability.

Question 34

Students should:

- use the Reference Sheet to write down the formula for E(X)
- fully simplify the series E(X)
- equate the expression for the sum of probabilities P(X = x) = 1
- express the sum of the probabilities as a geometric sequence
- manipulate algebraic fractions carefully
- make the connection between the expression for the sum of the probabilities and E(X) to show the desired result.

In better responses, students were able to:

- use E(X) = np to generate a series
- recognise the pattern to simplify $E(X) = nr^{n+1}$
- equate the algebraic sum of the probabilities to 1
- use the sum of a geometric sequence to show that $r^{n+1} = 2r 1$
- rearrange an algebraic expression
- link both equations and connect to show required result.

- familiarising with the Reference Sheet to write down the geometric sequence formula
- understanding the difference between E(x) = E(x)p(x) and the arithmetic mean
- understanding that the sum of probabilities is equal to 1
- distinguishing between an arithmetic and geometric series
- distinguishing between a geometric series with and without a limiting sum
- reversing a geometric series to simplify the substitutions in the formula
- fully simplifying algebraic expressions
- working with index laws to simplify patterns
- appreciating that the question is asking for 'show that'
- showing all necessary steps in a 'show' question.