

Mathematics Advanced

HSC Marking Feedback 2022

Question 11 (a)

Students should:

- know how to add values in a frequency column one at a time to complete a cumulative frequency column
- know how to use the cumulative frequency to find the cumulative percentage
- be able to calculate the required values by observing the given values.

In better responses, students were able to:

- correctly calculate the indicated values from the table
- find the values of *A* and *B* through correct calculations.

Areas for students to improve include:

- identifying the necessary values needed to establish correct calculations
- understanding how to calculate a percentage
- ensuring that their answer makes sense within the context of the question.

Question 11 (b)

Students should:

- know how to read and interpret a Pareto chart
- know how to identify which columns are included within the 80% cumulative percentage
- identify both types of complaints.

In better responses, students were able to:

- identify the types of complaints that represented 80% of complaint types
- correctly state the complaints addressed.

- understanding the difference between a Pareto chart and a cumulative frequency ogive
- understanding how to read a Pareto chart.

Question 12 (a)

Students should:

- understand what is meant by inverse variation
- calculate the value of the constant of proportionality
- know how to write and solve an inverse variation equation using the information and values given.

In better responses, students were able to:

- relate *M* and *T* in a correct inverse equation
- calculate the value of the proportionality constant
- solve the equation for k and rewrite in the form $M = \frac{180}{T}$.

Areas for students to improve include:

- associating inverse variation with reciprocal functions
- recognising the difference between inverse and direct variation
- substituting the correct values for the variables used in the question.

Question 12 (b)

Students should:

- complete the table of values using their function found in (a)
- plot the points correctly from the table of values
- join their points with a smooth curve.

In better responses, students were able to:

- correctly complete a table of values
- plot their points from the table of values accurately on the given number plane and draw a smooth curve rather than 2 straight lines.

Areas for students to improve include:

- plotting points from a table of values accurately
- checking the scale used on the grid provided, so that the points are plotted correctly
- drawing one smooth curve rather than a ruler to connect the points in a straight line.

Question 13

- use the trapezoidal rule for 2 applications
- find function values by substituting in x = 0, x = 1, x = 2.

In better responses, students were able to:

- recognise that 2 applications requires 3 function values
- determine the exact function values at x = 0, x = 1 and x = 2
- use the trapezoidal rule formula correctly.

Areas for students to improve include:

- understanding the relationship between the number of applications and the number of function values required
- showing substitution into the trapezoidal formula
- understanding that the trapezoidal rule finds the approximate value of the integral and therefore integration is not required.

Question 14

Students should:

- read the amplitude from the graph for the value of k
- read the period from the graph (6π)
- recognise that the period is given by $\frac{2\pi}{a}$.

In better responses, students were able to:

- understand that the vertical dilation equals the amplitude, which is a distance
- understand the scale factor for the horizontal dilation and how it relates to a.

Areas for students to improve include:

- understanding that the period is $\frac{2\pi}{a}$
- understanding the relationship between a and the scale factor for horizontal dilation.

Question 15 (a)

Students should:

- identify the relevant selections
- use a probability tree or list possible outcomes
- recognise the need to add multiple probabilities to get a final answer.

In better responses, students were able to:

- demonstrate their understanding of probability calculations
- correctly add and multiply fractions to reach the correct answer.

- reading the question carefully to obtain the correct sample space and favourable events
- using their calculator correctly when working with fractions.

Question 15 (b)

Students should:

- find the probability needed for the numerator $P(\text{special die } \cap 5)$
- use the value given in part (a) for the denominator of the conditional probability.

In better responses, students were able to:

- apply the conditional probability formula, including finding the intersection on the numerator
- correctly substitute their answer found in part (a) as the denominator.

Areas for students to improve include:

- recognising conditional probability statements
- applying probability in a complex situation involving conditional probability.

Question 16

Students should:

- determine the area of a shaded region by subtracting functions in the correct order
- show the resulting definite integral
- substitute the correct limits to find the area.

In better responses, students were able to:

- write an integrand for the area between the two curves
- integrate the resulting expression
- substitute the correct limits to find the area.

Areas for students to improve include:

- subtracting functions in the correct order to find the area
- showing substitution of limits, including using brackets for negative values.

Question 17 (a)

Students should:

- identify the number of cards by forming an arithmetic sequence with the first term a=3, common difference d=3 and number of terms n=12
- use the summation formula $S_n = \frac{n}{2} \{2a + (n-1)d\}$ or find the 12th term and use $S_n = \frac{n}{2}(a+l)$
- check their answer matches the given answer in a 'show' question.

In better responses, students were able to:

- identify that the situation involved an arithmetic series to be calculated
- apply the summation formula correctly to show the correct sum of 234 is achieved when n=12, or compile a list of all 12 terms that when added showed that S=234, or solve a quadratic equation (using the quadratic formula, by factorisation or completing the square

• demonstrate appropriate substitutions into the formula used from the Reference Sheet after correctly identifying *a* and *d*.

Areas for students to improve include:

- writing at least 3 terms to determine that an arithmetic series and not a geometric series was to be calculated
- making use of the Reference Sheet to apply the correct formula
- using brackets appropriately when substituting into the formula
- understanding that when the word 'total' is used it is referring to the sum and not the nth term.

Question 17 (b)

Students should:

- use the summation formula, using S = 828 to find n
- obtain the correct quadratic equation and solve for n by either factorization or by using the quadratic formula and stating the positive result for n = 23 as n > 0.

In better responses, students were able to:

- select the correct formula from the Reference Sheet and obtain and solve the resulting quadratic equation, accepting the positive value and rejecting the negative value
- compile a list of all 23 terms that were added to show S = 828
- use the summation formula using S=828, a=3 and d=3 to guess and check values for n, correctly stating that n=23.

Areas for students to improve include:

- developing the algebraic skills to solve a quadratic equation after starting with $S_n = 828$
- showing a summation to verify that $S_n = 828$, if a list has been used
- checking their solution matches the required answer by substitution back into the original formula
- recognising that the number of rows needs to be a positive integer.

Question 18 (a)

Students should:

• use the chain rule to differentiate a function of the form f(g(x)).

In better responses, students were able to:

use the chain rule to determine the derivative.

- recognising when to use the chain rule
- using algebraic skills in simplifying expressions.

Question 18 (b)

Students should:

- recognise the link to the previous question, from the term "Hence"
- understand the link between differentiation and integration
- use the reverse chain rule to find the anti-derivative of the function.

In better responses, students were able to:

- recognise the link from the previous question
- demonstrate their understanding that the anti-derivative required the reverse chain rule
- manipulate the given expression into an appropriate form to integrate.

Areas for students to improve include:

- applying the reverse chain rule with the relevant working
- recognising the term "Hence" implies the need to use the previously obtained result
- adjusting the integral and relating it to the derivative from part (a).

Question 19

Students should:

- take note of the order of transformation
- write an expression for g(x) in terms of m and k
- find m and k for the given quadratic by completing the square or expanding and equating coefficients to solve for m and k.

In better responses, students were able to:

- express g(x) in terms of m and k
- expand and equate coefficients
- complete the square of a non-monic quadratic
- identify m by finding the vertex.

- expanding perfect squares
- completing the square of a non-monic quadratic
- equating coefficients of a quadratic expression.

Question 20 (a)

Students should:

• substitute t = 0 into the function to find the initial population.

In better responses, students were able to:

use their calculator to correctly evaluate the exponential expression.

Areas for students to improve include:

- understanding that 'initial' means t = 0
- recognising that $e^0 = 1$.

Question 20 (b)

Students should:

• substitute t = 24 into the function to find the required population.

In better responses, students were able to:

use their calculator to correctly evaluate the exponential expression.

Areas for students to improve include:

- showing the substitution t = 24 into the expression
- taking care with transcription of all numerals.

Question 20 (c)

Students should:

- find the derivative of an exponential function
- calculate the rate of increase by substituting t = 24 into the derivative.

In better responses, students were able to:

- understand that the instantaneous rate of change is given by the derivative
- show the substitution t = 24 into the derivative.

Areas for students to improve include:

- finding the derivative of exponential functions with a coefficient
- using their calculator to correctly evaluate the exponential expression
- recognising the difference between instantaneous rate of change and average rate of change.

Question 21 (a)

- apply the compound interest formula, showing clear substitution of values
- calculate the number of compounding periods

- calculate the correct interest rate and time periods for compounding monthly
- use a calculator to find the solution.

In better responses, students were able to:

- clearly demonstrate the correct use of the compound interest formula
- show their substitution clearly
- use a calculator to find the solution and round their answer correctly.

Areas for students to improve include:

- finding the interest rate and the number of compound periods
- distinguishing compound interest investments from other investment types
- applying the compound interest formula
- adjusting interest rates and time periods based on the compounding period.

Question 21 (b)

Students should:

- find the future value of an annuity by selecting the correct cell on a table of future values and multiplying by the regular deposit
- convert the annual interest rate to a quarterly interest rate as a decimal, and the number of periods for the investment
- subtract the future values from option 1 and option 2 to determine the difference.

In better responses, students were able to:

- identify the correct cell from the future value table and multiply by the regular deposit
- subtract the two future values to calculate the difference
- identify the correct value from the table and multiply it by 1000
- clearly show a numerical expression for the difference between Option 1 and Option 2.

Areas for students to improve include:

- converting the interest rate and calculating the number of periods
- using the table to find the future value of an annuity
- expressing the difference as an expression before the final calculation
- ensuring they have answered the entire question.

Question 22

- know how to find stationary points and the y -values of the endpoints
- compare the y -values of the stationary points and the endpoints to identify the global maximum and minimum values

find the first derivative and factorise to find the stationery points.

In better responses, students were able to:

- find the first derivative, use this to find the stationary points, find the y –values of the endpoints and identify the global maximum and minimum
- set out their solution clearly, demonstrating each step of working
- show the substitution as a numerical expression when finding the y –values.

Areas for students to improve include:

- understanding the difference between a global and local maximum and minimum
- recognising the need for calculus to be applied in order to find stationary points
- deriving accurately and using algebra skills to factorise and solve $\frac{dy}{dx} = 0$
- substituting into the function to find the y –values of relevant points.

Question 23 (a)

Students should:

- establish the centre of oscillation for a trigonometric function
- use amplitude to find the maximum and minimum values of a trigonometric function.

In better responses, students were able to:

- identify that the maximum and minimum values of a basic cosine function are ±1
- use the amplitude to find the maximum and minimum values of a wave function.

Areas for students to improve include:

- identifying the amplitude of the given wave function
- showing the use of the amplitude to find the maximum and minimum values of the given wave function.

Question 23 (b)

Students should:

- understand how to find the period of a trigonometric function
- be able to perform simple calculations involving π .

In better responses, students were able to:

- use $\frac{2\pi}{a}$ to find the period of a cosine curve
- perform a multiplication of fractions containing π .

- using the period to find the time between successive low tides
- calculations involving π.

Question 23 (c)

Students should:

- use the given information to write a trigonometric equation
- solve the trigonometric equation for t
- find the required length of time.

In better responses, students were able to:

- write a correct trigonometric equation
- solve the trigonometric equation to find all relevant solutions for t
- correctly subtract fractions to find the required time.

Areas for students to improve include:

- showing all working to find relevant solutions for a trigonometric equation using radians
- simplifying calculations involving exact trigonometric ratios in radians
- identifying what is required to answer the given question.

Question 24

Students should:

- use correct terminology when describing correlation and refer to the correlation coefficient in formulating their answer
- recognise that the question asks them to interpret the data, meaning that they must comment on the context of the research
- know how to read and interpret a scatter plot, line of best fit and correlation coefficient
- recognise that a four-mark question is likely to require four unique facts.

In better responses, students were able to:

- use the appropriate language for bivariate data and other statistical terms and notations
- respond to the question with accurate, unique and contextual answers, keeping answers brief and to the point
- describe the relationship between the variables in the given context using unique and accurate statements observed from the data
- recognise the limitations of the line of best fit.

- comparing bivariate data using the two dimensions given and not finding a statistical measure of one variable only
- using their understanding of the strength, direction and type of correlation to interpret and report on the data in context
- using all information given in formulating their answer (graph, equation, correlation coefficient).

Question 25

Students should:

- apply trigonometric differentiation rules to $f(x) = \sin 2x$ to find f'(x) and f''(x)
- determine correct quadrants for each possible solution of the two trigonometric equations (f'(x)) and f''(x) and that each equation will have two possible answers, then identify a single answer/ quadrant which produces the correct result for both equations
- recognise the question required a solution in radians
- interpret the meaning of 'AND' in the question as the intersection of $x = \frac{5\pi}{12}, \frac{7\pi}{12}$ and $x = \frac{7\pi}{12}, \frac{11\pi}{12}$.

In better responses, students were able to:

- differentiate $f(x) = \sin 2x$ and solve for the correct values of x in the given domain, then verify the two possible solutions with the second derivative
- solve both first and second derivative equations correctly and find the common x value
- correctly differentiate the trigonometric function twice and solve the resulting equations.

Areas for students to improve include:

- providing a solution in radians rather than degrees
- changing the domain to $0 \le 2x \le 2\pi$ to find the required 2x angles using an appropriate angles of any magnitude technique
- using the Reference Sheet to correctly differentiate trigonometric equations
- checking their final answer satisfies the initial conditions of the question.

Question 26

Students should:

- use the mean and standard deviation to determine what score is 1 standard deviation from the mean, and the normal distribution to determine the percentage of batteries within the given range
- identify that 34% of the data lie between 840 and 920, and calculate that 10% of the data lie between 820 and 840
- add the probabilities to find the answer.

In better responses, students were able to:

- subtract 50% from 60% to find the percentage of batteries within the given lifespan below the mean and add this to the 34% of batteries within the given lifespan above the mean to find the approximate percentage of batteries within the given lifespan
- represent the relevant information on the normal distribution curve
- show their calculations clearly when writing their answer.

Areas for students to improve include:

 identifying that there are 68% of scores between the first standard deviations either side of the mean, dividing 68% by 2 to get 34% as the distribution is symmetrical

- identifying the values of the mean and integer z-scores when using a scale to show normal distribution
- distinguishing between the percentage and number of batteries to make relevant calculations, checking the reasonableness of their answer.

Question 27 (a)

Students should:

- use the Reference Sheet to use the product rule for the second term
- collect like terms and factorise f''(x) to show the required result.

In better responses, students were able to:

- understand that the product rule was necessary to solve the problem and determine the two functions required in the product rule
- correctly work with the negative terms throughout the solution
- factorise exponentials and negatives appropriately.

Areas for students to improve include:

- expanding grouping symbols involving a negative factor carefully and correctly
- recognising when to use the product rule as the best approach to differentiating
- differentiating exponentials correctly
- setting their work out clearly, showing all steps.

Question 27 (b)

Students should:

- factorise and solve an exponential equation
- find the stationary point
- determine the nature of their stationary point correctly using f'(x) or f''(x).

In better responses, students were able to:

- recognise the first derivative had only one solution
- find the stationary point by setting the first derivative equal to 0 and solving the equation by realising that $e^{-2x} \neq 0$
- determine the nature of stationary points by using the second derivative test, classifying the stationary point as a maximum.

- understanding that the terms 'maximum' and 'minimum' should be used to classify stationary points
- using either the first or second derivative to determine the nature of the stationary points
- setting their work out clearly.

Question 27 (c)

Students should:

- sketch the curve, clearly labelling all relevant information
- use an appropriate scale on their graph
- find and verify points of inflection, x and y intercepts and demonstrate that an asymptote exists.

In better responses, students were able to:

- show that the positive x axis is an asymptote
- sketch the curve and clearly label the stationary points, axes intercept and point of inflection
- find the point of inflection using f''(x) = 0, showing a change in concavity either side of the point.

Areas for students to improve include:

- using an appropriate scale on their graph
- understanding the difference between a point of inflection and a horizontal point of inflection
- sketching the graph as a smooth curve with clear labelling of all relevant features.

Question 28 (a)

Students should:

- find the radius of the circle
- calculate the area of the sector using $A = \frac{1}{2}r^2\theta$
- calculate the area of the triangle using $A = \frac{1}{2}bh$
- calculate the shaded area by subtracting the area of the triangle from the area of the sector.

In better responses, students were able to:

- work in radians rather than degrees
- use $A = \frac{1}{2}bh$ rather than $A = \frac{1}{2}ab \sin C$
- use trigonometry to find $\theta = \frac{\pi}{4}$
- leave answers in exact form.

- working in radians
- understanding the Cartesian plane
- understanding that the formula $A = \frac{1}{2}r^2\theta$ requires θ in radians.

Question 28 (b)

Students should:

- substitute x = 0 and y = 0 into the function to show a = b
- substitute x = 1 and y = 1 into the function to obtain $\frac{a}{b-1} = 2$.

In better responses, students were able to:

- solve simultaneous equations
- clearly show all algebraic steps
- work with algebraic fractions.

Areas for students to improve include:

- not using the given answer to solve a 'show' question
- manipulating algebraic fractions.

Question 28 (c)

Students should:

- find the area under the curve by evaluating $\int_0^1 (\frac{2}{2-x} 1) dx$
- find the total area by adding the solution of the integral to their answer from part (a).

In better responses, students were able to:

- integrate $\frac{2}{2-x}$ and -1 to reach the correct primitive
- leave answers in exact form.

Areas for students to improve include:

- finding primitives involving logs and another expression
- understanding the primitive of -1 is -x
- reading the question for guidance
- understanding that 'using part (a)' means the result from part (a) can be used without recalculation
- understanding that some areas cannot be found using integration.

Question 29 (a)

Students should:

- recognise the question was a limiting sum of a geometric series
- use the limiting sum formula to show the limiting sum is 2.

In better responses, students were able to:

- identity the common ratio and first term.
- clearly show the substitution into the limiting sum formula.

Areas for students to improve include:

- stating the values for the common ratio and first term
- substitution and simplifying fractions.

Question 29 (b)

Students should:

- identify the question as an integral that can be solved using the Reference Sheet
- substitute in the limits of the integral.

In better responses, students were able to:

- use the Reference Sheet to integrate the exponential function
- manage the negative index
- correctly substitute the limits into the integral to obtain the given result.

Areas for students to improve include:

- using the Reference Sheet to integrate exponential functions
- understanding and applying the laws for negative indices
- manipulating algebraic and arithmetic fractions
- substituting upper and lower limits.

Question 29 (c)

Students should:

- identify the question as a comparison of the rectangles and the exponential curve
- use the correct inequality statement to compare the results of parts (a) and (b)
- rearrange the inequality using logarithmic and index laws correctly for the required solution.

In better responses, students were able to:

- demonstrate their understanding by comparing parts (a) and (b)
- use an efficient starting statement to form their solution
- correctly rearrange the inequality using the required logarithmic and index laws.

- using algebraic skills when simplifying inequalities
- using logarithmic and index laws
- showing all steps in calculations.

Question 30 (a)

Students should:

- identify the question as a cumulative distribution function (CDF)
- solve the CDF = 1 to show the required k value
- substitute into the CDF for the correct limits to evaluate a correct response.

In better responses, students were able to:

- manipulate the given CDF expression into an appropriate form to evaluate the k value
- use efficient algebraic strategies involving fractions and equations.

Areas for students to improve include:

- understanding the difference between a probability density function (PDF) and a cumulative distribution function (CDF)
- recognising the CDF evaluated at its limits is equated to 1
- not substituting k = 3 into the CDF; rather finding the value of k.

Question 30 (b)

Students should:

- recognize P(X < c) + P(X > c) = 1
- solve the given equation using the identity P(X > c) = 1 P(X < c)
- solve the resulting logarithmic equation.

In better responses, students were able to:

- identify $P(X < c) = \frac{2}{3}$
- simplify the expression before substituting the given equation
- solve the resulting logarithmic equation.

Areas for students to improve include:

- applying index and logarithmic laws
- understanding the meaning of the notation P(X < c)
- recognising P(X > c) = 1 P(X < c).

Question 31 (a)

- write an equation using equivalent expressions
- carefully manipulate the resulting equation to obtain the required result.

In better responses, students were able to:

- equate two equivalent expressions for the gradient, equate the ratios of corresponding sides in similar triangles or form an equation using the ratio of the areas of similar triangles
- manipulate a simple equation to obtain the required result.

Areas for students to improve include:

- recognising that a relationship between two equivalent expressions is required
- showing all working to obtain the required result.

Question 31 (b)

Students should:

- write an equation for the required area in terms of x
- find the derivative of the resulting equation
- find stationary points and test their nature to find the minimum x value
- use the minimum x value to find the required area.

In better responses, students were able to:

- use the information given in part (a) to write an equation for the area of the triangle
- correctly differentiate the resulting equation using the quotient rule or product rule
- find all stationary points and correctly test their nature
- use the minimum value to find the required area.

Areas for students to improve include:

- writing a simple equation for the area of the triangle
- using related information to write the area equation in x
- showing all working when using the derivative to obtain the stationary points
- showing derivative values (if using a table) and using suitable *x* values close to the stationary point to test their nature
- showing all working to find the required area of the triangle.

Question 32 (a)

- recognise that $1 + (1.0025)^1 + ... + (1.0025)^{179} \approx 226.97$ is the sum of a geometric progression (GP)
- use an appropriate formula from the Reference Sheet to find the sum using n=180 and $M\left[\frac{(1.0025)^{180}-1}{1.0025-1}\right]$ or $M\left[\frac{1-(1.0025)^{180}}{1-1.0025}\right]$, then rewrite the equation with M as the subject to show the appropriate value

 show the necessary steps to demonstrate understanding of the process in order to arrive at the given value.

In better responses, students were able to:

- substitute $A_n = 0$, P = 200000, r = 1.0025 and n = 180 correctly into the given formula
- identify the connection to GPs and select a suitable formula from the Reference Sheet
- make M the subject in the equation $2000000(1.0025)^{180} = M\left[\frac{(1.0025)^{180}-1}{1.0025-1}\right]$, then check the calculation provides the given value for M.

Areas for students to improve include:

- understanding a 'show' question requires demonstrated working out
- checking their final answer matches the given answer in a 'show' question
- not proving a result when instructed 'Do NOT prove this'.

Question 32 (b)

Students should:

- recognise the technique used in part (a) is relevant for part (b)
- substitute the values P = 100032, r = 1.0035, M = 1381.16 and $A_n = 0$ into the amount owing formula and solve for n
- note that the interest rate has changed to 0.35%, 100 months into the loan, and that the
 question asked to find how many more months the loan period was extended for

In better responses, students were able to:

- manage the complex logarithmic and exponential work required to solve the question
- collect the like terms involving $(1.0035)^n$, make this the subject, then take the logarithm of both sides or change from index form to logarithmic form to determine a decimal approximation for n.
- calculate both A_{83} and A_{84} to conclude that 83 full monthly payments are made.

- not proving a result that has clearly been stated 'Do NOT prove this'
- calculating both A_{83} and A_{84} to conclude that 83 full monthly payments are made
- not rounding their answer up to n = 84 as this would result in overpaying the loan
- more care when setting out solutions
- avoiding arithmetic errors when rearranging equations involving indices
- reading questions carefully, in this case not mistaking the value of P for the value of A_n .

Question 32 (c)

Students should:

- use their rounded answer from part (b) to determine the amount owing after 83 full payments
- apply the interest charged for 1 month on the final amount owing.

In better responses, students were able to:

- use their rounded answer from part (b) to ensure the final repayment is less than \$1381.16
- demonstrate an understanding of the necessary additional interest calculation $(A_{83} \times 1.0035)$
- identify the two components of the question, rounding their part (b) answer for n down to 83, then use the formula correctly where P=100032, r=1.0035 and M=\$1381.16 to find the amount owing, then multiply the final answer by 1.0035 to give $A_n=\$931.54$
- understand the significance of getting a non-integer value of n, indicating there is less than the full payment amount in the last month.

- considering if their final solution is reasonable within the context of the question; in this case the final payment should not be larger than the original payments for the loan
- remembering to multiply the final amount owing by 1.0035 as interest for that month needs to be added to obtain the final payment amount
- checking their solution answers the question.