

# **2023 HSC Mathematics Advanced Marking Guidelines**

## Section I

## **Multiple-choice Answer Key**

| Question | Answer |
|----------|--------|
| 1        | D      |
| 2        | D      |
| 3        | А      |
| 4        | В      |
| 5        | A      |
| 6        | С      |
| 7        | А      |
| 8        | В      |
| 9        | D      |
| 10       | С      |

# **Section II**

## **Question 11**

| Criteria                                         | Marks |
|--------------------------------------------------|-------|
| Provides correct solution                        | 2     |
| Finds the common difference, or equivalent merit | 1     |

$$d = 7 - 3 = 4$$

$$d = 4$$

$$a = 3$$

$$t_{15} = a + (15 - 1)d = 3 + 14 \times 4$$
  
= 59

# Question 12 (a)

| Criteria                  | Marks |
|---------------------------|-------|
| Provides correct solution | 1     |

#### Sample answer:

$$E(X) = \sum x P(x)$$
= 0×0+1×0.3+2×0.5+3×0.1+4×0.1
= 2

## Question 12 (b)

| Criteria                                     | Marks |
|----------------------------------------------|-------|
| Provides correct solution                    | 2     |
| Attempts to find Var(X), or equivalent merit | 1     |

$$Var(X) = E(X^{2}) - \mu^{2}$$

$$= E(X^{2}) - [E(X)]^{2}$$

$$= \sum x^{2} P(x) - 4$$

$$= 0 \times 0 + 1^{2} \times 0.3 + 2^{2} \times 0.5 + 3^{2} \times 0.1 + 4^{2} \times 0.1 - 4$$

$$= 0.8$$

Standard deviation = 
$$\sqrt{0.8}$$
  
= 0.8944...  
= 0.9 (to 1 decimal place)

| Criteria                                             | Marks |
|------------------------------------------------------|-------|
| Provides correct solution                            | 2     |
| Attempts to find antiderivative, or equivalent merit | 1     |

$$\frac{dP}{dt} = 3000e^{2t}$$

$$\therefore P = \frac{3000}{2}e^{2t} + C$$

$$= 1500e^{2t} + C$$

When 
$$t = 0$$
,  $P = 4000$   
 $\therefore 4000 = 1500e^{2 \times 0} + C$   
 $\therefore C = 2500$ 

So 
$$P(t) = 1500e^{2t} + 2500$$

| Criteria                                                     | Marks |
|--------------------------------------------------------------|-------|
| Provides correct solution                                    | 3     |
| Correctly finds slope of tangent, or equivalent merit        | 2     |
| Attempts to find the correct derivative, or equivalent merit | 1     |

## Sample answer:

$$y = (2x + 1)^{3}$$
$$y' = 3 \times (2x + 1)^{2} \times 2$$
$$= 6(2x + 1)^{2}$$

When 
$$x = 0$$
  $y' = 6$ 

Equation of tangent given by:

$$y-1 = 6(x-0)$$
$$y-1 = 6x$$
$$y = 6x + 1$$

# Question 15 (a)

| Criteria                                     | Marks |
|----------------------------------------------|-------|
| Provides correct solution                    | 2     |
| Identifies the correct factor from the table | 1     |

## Sample answer:

Amount = 
$$\frac{$450\,000}{13.181}$$
  
= \$34 140 (to the nearest dollar)

# Question 15 (b)

| Criteria                                                                                  | Marks |
|-------------------------------------------------------------------------------------------|-------|
| Provides correct solution                                                                 | 3     |
| Provides the correct interest rate and the correct number of periods, or equivalent merit | 2     |
| Multiplies a factor from the table by \$8535, or equivalent merit                         | 1     |

$$r = \frac{6}{4}\%$$

$$= 1.5\%$$

$$n = 10 \times 4$$

$$= 40$$

Amount = 
$$$8535 \times 54.268$$
  
=  $$463 177.38$ 

| Criteria                                                                                                  | Marks |
|-----------------------------------------------------------------------------------------------------------|-------|
| Provides correct solution                                                                                 | 4     |
| Calculates the arc length AND the length of line segment PQ, or equivalent merit                          | 3     |
| Calculates the arc length OR the length of line segment PQ, or equivalent merit                           | 2     |
| Attempts to calculate the perimeter of the shape by adding some appropriate portions, or equivalent merit | 1     |

Arc length 
$$PQ = \frac{110}{360} \times 2 \times \pi \times 2.1$$
  
= 4.03171...

Length 
$$PQ = \sqrt{2.1^2 + 2.1^2 - 2 \times 2.1 \times 2.1 \times \cos 110^\circ}$$
  
= 3.4404...

Total perimeter = 
$$(3.6 \times 2) + 8.0 + (8.0 - 3.4404) + 4.0317$$
  
=  $23.7913$   
=  $23.8 \text{ m}$ 

| Criteria                                                             | Marks |
|----------------------------------------------------------------------|-------|
| Provides correct solution                                            | 2     |
| • Recognises the integral is of the form $k \int f'(x)[f(x)]^n dx$ , | 1     |
| or equivalent merit                                                  |       |

$$\int x(x^2+1)^{\frac{1}{2}} dx$$

$$= \frac{1}{2} \int 2x(x^2+1)^{\frac{1}{2}} dx$$

$$= \frac{1}{2} \left[ \frac{(x^2+1)^{\frac{3}{2}}}{\frac{3}{2}} \right] + C$$

$$= \frac{1}{3} (x^2+1)^{\frac{3}{2}} + C$$

# Question 18 (a)

| Criteria                                                                                               | Marks |
|--------------------------------------------------------------------------------------------------------|-------|
| Correctly plots both points on the graph                                                               | 3     |
| • Calculates $\overline{x}$ and $\overline{y}$ , and plots this point on the grid, or equivalent merit | 2     |
| • Calculates $\overline{x}$ or $\overline{y}$ , or equivalent merit                                    | 1     |

$$\bar{x} = \frac{0+0+0+2+5+7+8+9+9+10}{10}$$
= 5

$$\overline{y} = \frac{1840}{10}$$
$$= 184$$

$$\therefore (\overline{x}, \overline{y}) = (5, 184)$$



# Question 18 (b)

| Criteria                                                    | Marks |
|-------------------------------------------------------------|-------|
| Provides correct solution                                   | 2     |
| Finds the slope of the regression line, or equivalent merit | 1     |

## Sample answer:

Slope of regression line = 
$$\frac{184 - 236}{5}$$
  
= -10.4

Gas usage = 
$$236 - 10.4 \times \text{temperature}$$

ie 
$$y = 236 - 10.4x$$

# Question 18 (c)

| Criteria                                                         | Marks |
|------------------------------------------------------------------|-------|
| Identifies one problem with predicting using the regression line | 1     |

#### Sample answer:

When temperature is 23°C, the regression equation provides a negative answer, which is not physically possible (negative gas usage).

# Question 19 (a)

| Criteria                                            | Marks |
|-----------------------------------------------------|-------|
| Provides correct graphs                             | 2     |
| • Provides a sketch of $f(x)$ , or equivalent merit | 1     |

### Sample answer:



# Question 19 (b)

| Criteria                                                            | Marks |
|---------------------------------------------------------------------|-------|
| Provides correct solution                                           | 2     |
| • Finds that the graphs intersect at $x = -4$ , or equivalent merit | 1     |

#### Sample answer:

The graphs meet when

$$x - 1 = (1 - x)(3 + x)$$

$$\therefore x = 1 \quad \text{or} \quad 3 + x = -1$$
ie  $x = 1 \quad \text{or} \quad x = -4$ 

From part (a), -4 < x < 1.

| Criteria                                                    | Marks |
|-------------------------------------------------------------|-------|
| Provides correct solution                                   | 3     |
| • Provides $\theta$ – 60° = 240°, 300°, or equivalent merit | 2     |
| • Recognises that $\sin 60^\circ = \frac{\sqrt{3}}{2}$      | 1     |



| Criteria                                   | Marks |
|--------------------------------------------|-------|
| Provides correct solution                  | 3     |
| • Finds $r^4$ , or equivalent merit        | 2     |
| • Writes $ar^3 = 48$ , or equivalent merit | 1     |

#### Sample answer:

Let a =first term and r =common ratio

Then 
$$ar^3 = 48$$
 ————(1)

and 
$$ar^7 = \frac{3}{16}$$
 (2)

Dividing (2) by (1),

$$\frac{ar^7}{ar^3} = \frac{\frac{3}{16}}{48}$$

$$\therefore r^4 = \frac{1}{256}$$

$$\therefore r = \pm \frac{1}{4}$$

If 
$$r = \frac{1}{4}$$
  $a\left(\frac{1}{4}\right)^3 = 48$   $\therefore a = 3072$ 

If 
$$r = -\frac{1}{4}$$
  $a\left(-\frac{1}{4}\right)^3 = 48$   $\therefore a = -3072$ 

| Criteria                                                   | Marks |
|------------------------------------------------------------|-------|
| Provides correct solution                                  | 3     |
| Finds the length of AM, or equivalent merit                | 2     |
| Indicates that triangle ADM is useful, or equivalent merit | 1     |

### Sample answer:

### Find AM



## Triangle AME,



So 
$$\tan \alpha = \frac{\sqrt{58}}{8}$$
  
 $\alpha = 43.59^{\circ}$   
so  $\alpha = 44^{\circ}$  (to the nearest degree)

| Criteria                                                                 | Marks |
|--------------------------------------------------------------------------|-------|
| Provides correct solution                                                | 4     |
| Finds the correct proportion of the group of koalas, or equivalent merit | 3     |
| Finds the correct probability from the table, or equivalent merit        | 2     |
| Calculates the correct z value, or equivalent merit                      | 1     |

## Sample answer:

$$z = \frac{x - \mu}{\sigma}$$

$$= \frac{11.93 - 10.40}{1.15}$$

$$= 1.33 \qquad (2 \text{ decimal places})$$

 $\therefore$  Probability from table = 0.9082

$$P(\text{more than } 11.93) = 1 - 0.9082$$
  
= 0.0918

Number of koalas = 
$$0.0918 \times 400$$
  
=  $36.72$   
=  $36$  (accept 37 as well)

# Question 24 (a)

| Criteria                  | Marks |
|---------------------------|-------|
| Provides correct solution | 1     |

$$50 = (x-2)(y-1)$$

$$\frac{50}{x-2} = y-1$$

So 
$$y = \frac{50}{x-2} + 1$$
 as required.

## Question 24 (b)

| Criteria                                                            | Marks |
|---------------------------------------------------------------------|-------|
| Provides correct solution                                           | 4     |
| • Finds <i>x</i> = 12, or equivalent merit                          | 3     |
| Finds A', or equivalent merit                                       | 2     |
| Finds an expression for the Area in terms of x, or equivalent merit | 1     |

#### Sample answer:

Area of concrete path is 2y + x - 2

$$A = 2\left(\frac{50}{x-2} + 1\right) + x - 2$$

$$A = 2\left(\frac{50}{x-2}\right) + 2 + x - 2$$

$$A = \frac{100}{x-2} + x$$

$$= 100(x-2)^{-1} + x$$

$$A' = 100(-1(x-2)^{-2}) + 1$$
$$= \frac{-100}{(x-2)^2} + 1$$

$$A' = 0$$
 when  $\frac{-100}{(x-2)^2} = -1$   
 $100 = (x-2)^2$   
 $\pm 10 = x-2$   
 $x = 12 \text{ or } -8$ 

Since x is a distance, discard -8.

Stationary point at x = 12.

So there is a minimum turning point at x = 12.

The minimum area of the path is when x = 12.

## Question 25 (a)

| Criteria                  | Marks |
|---------------------------|-------|
| Provides correct solution | 1     |

#### Sample answer:

$$A_1 = 10\,000\,(1.004) - M$$
  
 $A_2 = (10\,000\,(1.004) - M)\,(1.004) - M$   
 $= 10\,000\,(1.004)^2 - M(1.004) - M$  as required.

## Question 25 (b)

| Criteria                                                                                                                      | Marks |
|-------------------------------------------------------------------------------------------------------------------------------|-------|
| Provides correct solution                                                                                                     | 3     |
| <ul> <li>Provides an expression for A<sub>n</sub> involving the sum of a geometric series,<br/>or equivalent merit</li> </ul> | 2     |
| • Finds an expression for $A_n$ using part (a), or equivalent merit                                                           | 1     |

$$A_n = 10\ 000\ (1.004)^n - M(1+1.004+\dots+1.004^{n-1})$$

$$= 10\ 000\ (1.004)^n - \frac{M(1.004^n - 1)}{0.004}$$

$$= 10\ 000\ (1.004)^n - \frac{M}{0.004} \times 1.004^n + \frac{M}{0.004}$$

$$= 10\ 000\ (1.004)^n - 250M \times 1.004^n + 250M$$

$$A_n = (10\ 000 - 250M)(1.004)^n + 250M$$

# Question 25 (c)

| Criteria                                                   | Marks |
|------------------------------------------------------------|-------|
| Provides correct solution                                  | 2     |
| • Identifies $A_n > 0$ and $n = 100$ , or equivalent merit | 1     |

#### Sample answer:

$$A_{100} > 0$$

$$(10\,000 - 250M)(1.004)^{100} + 250M > 0$$

$$10\,000 \times 1.004^{100} - 250M \times 1.004^{100} + 250M > 0$$

$$14\,906.34886 - 250M(1.004^{100} - 1) > 0$$

$$14\,906.34886 - 250M \times 0.4\,9063 > 0$$

$$14\,906.34886 > 122.6587...M$$

$$\frac{14\,906.34886}{122.6587...} > M$$

$$121.527 > M$$

The largest amount Jia could withdraw is \$121.52.

## Question 26 (a)

| Criteria                                      | Marks |
|-----------------------------------------------|-------|
| Provides correct solution                     | 2     |
| Finds the antiderivative, or equivalent merit | 1     |

### Sample answer:

$$\frac{dx(t)}{dt} = -1.5\pi \sin\left(\frac{5\pi}{4}t\right)$$

$$x(t) = \int -1.5\pi \sin\left(\frac{5\pi}{4}t\right)dt$$

$$= \frac{-1.5\pi}{\frac{5\pi}{4}} \times -\cos\left(\frac{5\pi}{4}t\right) + k$$

When 
$$t = 0$$
  $x = 11.2$ 

So 
$$11.2 = 1.2\cos(0) + k$$
  
 $11.2 = 1.2 + k$   
 $k = 10$ 

$$x(t) = 1.2\cos\left(\frac{5\pi}{4}t\right) + 10$$

## Question 26 (b)

| Criteria                              | Marks |
|---------------------------------------|-------|
| Provides correct solution             | 2     |
| Finds the period, or equivalent merit | 1     |

Period = 
$$\frac{2\pi}{\frac{5\pi}{4}}$$
 = 1.6

$$10 \div 1.6 = 6.25$$

- : Number of complete periods in 10 seconds is 6.
- :. Reaches closest point to camera 6 times.

## Question 27 (a)

| Criteria                                        | Marks |
|-------------------------------------------------|-------|
| Provides correct solution                       | 3     |
| Finds the value of b and c, or equivalent merit | 2     |
| Finds value of c, or equivalent merit           | 1     |

#### Sample answer:

c = 7 Since the absolute value graph has been shifted by 7 vertically

b = 6 Shifted by 6 to the right

Let 
$$x = 3$$
,  $y = -5$ 

$$f(3) = a |3 - 6| + 7 = -5$$

$$3a + 7 = -5$$

$$3a = -12$$

$$a = -4$$

$$\therefore a = -4, b = 6, c = 7$$

## Question 27 (b)

| Criteria                                             | Marks |
|------------------------------------------------------|-------|
| Provides correct solution                            | 2     |
| • Finds that $m < \frac{7}{6}$ , or equivalent merit | 1     |

### Sample answer:

Line joining (6, 7) with (0, 0) has slope  $\frac{7}{6}$ 

m must be less than  $\frac{7}{6}$  to cut the graph in two places.

Slope of right side of graph is -4

 $\it m$  must be greater than -4 or it will only cut graph once

Hence 
$$-4 < m < \frac{7}{6}$$
.

| Criteria                                                      | Marks |
|---------------------------------------------------------------|-------|
| Provides correct solution                                     | 4     |
| Finds the x-coordinate of R AND the antiderivative for y      | 3     |
| Finds the x-coordinate of R OR the antiderivative for y       | 2     |
| • Attempts to solve $\frac{dy}{dx} = 1$ , or equivalent merit | 1     |

#### Sample answer:

$$\frac{dy}{dx} = 3x^2 - 6x - 8$$

Tangent at (-1, 6) is y = x + 7

Slope of tangent is 1.

Solve 
$$\frac{dy}{dx} = 1$$
 ie  $3x^2 - 6x - 8 = 1$   
 $3x^2 - 6x - 9 = 0$   
 $3(x^2 - 2x - 3) = 0$   
 $3(x - 3)(x + 1) = 0$ 

So *x* coordinate of *R* is 3.

When 
$$\frac{dy}{dx} = 3x^2 - 6x - 8$$
  
 $y = x^3 - 3x^2 - 8x + k$  and when  $x = -1$   $y = 6$ .  
So  $6 = (-1)^3 - 3(-1)^2 - 8(-1) + k$   
 $6 = -1 - 3 + 8 + k$   
 $6 - 4 = k$   
 $k = 2$ 

When 
$$x = 3$$
  $y = x^3 - 3x^2 - 8x + 2$   
=  $27 - 27 - 24 + 2$   
=  $-22$ 

 $\therefore$  Coordinates of *R* are (3, -22).

# Question 29 (a)

| Criteria                                               | Marks |
|--------------------------------------------------------|-------|
| Provides correct solution                              | 2     |
| • Finds the derivative of $f(x)$ , or equivalent merit | 1     |

### Sample answer:

Mode of X will be when f(x) has a maximum.

$$f(x) = 12x^2 - 12x^3, \qquad 0 \le x \le 1$$

$$f'(x) = 24x - 36x^2$$
$$= 12x(2 - 3x)$$

$$f'(x) = 0$$
 when  $x = 0$  and when  $2 - 3x = 0$ 

$$x = \frac{2}{3}$$

Discard x = 0 since f(0) = 0 so

the mode of *X* is  $\frac{2}{3}$ .

## Question 29 (b)

| Criteria                                                          | Marks |
|-------------------------------------------------------------------|-------|
| Provides correct solution                                         | 2     |
| • Expresses $F(x)$ as an integral of $f(x)$ , or equivalent merit | 1     |

#### Sample answer:

$$F(x) = \int_0^x 12t^2 (1-t) dt$$

$$= \int_0^x 12t^2 - 12t^3 dt$$

$$= \left[ 4t^3 - 3t^4 \right]_0^x$$

$$= 4x^3 - 3x^4$$

## Question 29 (c)

| Criteria                                                                                            | Marks |
|-----------------------------------------------------------------------------------------------------|-------|
| Provides correct solution                                                                           | 2     |
| Substitutes the mode from part (a) into their cumulative distribution function, or equivalent merit | 1     |

#### Sample answer:

When 
$$x = \frac{2}{3}$$
  $4x^3 - 3x^4 = 4 \times \left(\frac{8}{27}\right) - 3 \times \left(\frac{16}{81}\right)$   
= 0.59

The probability of the variable being less than  $\frac{2}{3}$  is greater than 0.5, therefore the mode is greater than the median.

## Question 30 (a)

| Criteria                                                         | Marks |
|------------------------------------------------------------------|-------|
| Provides correct solution                                        | 3     |
| Finds the x values of the stationary points, or equivalent merit | 2     |
| Finds correct derivative, or equivalent merit                    | 1     |

#### Sample answer:

 $f(x) = e^{-x} \sin x$ 

$$f'(x) = e^{-x} \cos x + -e^{-x} \sin x$$
$$= e^{-x} (\cos x - \sin x)$$

$$f'(x) = 0$$
 when  $\cos x = \sin x$  
$$x = \frac{\pi}{4} \text{ or } \frac{5\pi}{4}$$
 so  $f(x) = e^{-\frac{\pi}{4}} \sin \frac{\pi}{4}$  or  $e^{-\frac{5\pi}{4}} \sin \frac{5\pi}{4}$ 

The two stationary points are

$$\left(\frac{\pi}{4}, \frac{e^{-\frac{\pi}{4}}}{\sqrt{2}}\right) \quad \text{and} \quad \left(\frac{5\pi}{4}, \frac{-e^{-\frac{5\pi}{4}}}{\sqrt{2}}\right)$$

$$\left(\frac{\pi}{4}, \ 0.322\right)$$
 and  $\left(\frac{5\pi}{4}, -0.014\right)$ 

# Question 30 (b)

| Criteria                                                         | Marks |
|------------------------------------------------------------------|-------|
| Provides correct graph                                           | 2     |
| Provides a graph with some correct features, or equivalent merit | 1     |





# Question 31 (a)

| Criteria                | Marks |
|-------------------------|-------|
| Provides correct reason | 1     |

#### Sample answer:

No, since  $P(F|S) \neq P(F)$ 

# Question 31 (b)

| Criteria                                                             | Marks |
|----------------------------------------------------------------------|-------|
| Provides correct solution                                            | 2     |
| Attempts to use conditional probability formula, or equivalent merit | 1     |

$$P(S|F) = \frac{P(S \cap F)}{P(F)}$$

$$\frac{1}{3} = \frac{P(S \cap F)}{\frac{3}{10}}$$

$$P(S \cap F) = \frac{1}{10}$$

$$P(F|S) = \frac{P(S \cap F)}{P(S)}$$

$$\frac{1}{8} = \frac{\frac{1}{10}}{P(S)}$$
 (since  $P(S \cap F) = P(F \cap S)$ )

$$P(S) = \frac{8}{10}$$
$$= \frac{4}{5}$$

# Question 31 (c)

| Criteria                                                      | Marks |
|---------------------------------------------------------------|-------|
| Provides correct answer                                       | 2     |
| Uses expression for complementary events, or equivalent merit | 1     |

$$1 - \left(\frac{4}{5}\right)^4 = 1 - \frac{256}{625} = \frac{369}{625} = 0.5904$$

## Question 32 (a)

| Criteria                                                          | Marks |
|-------------------------------------------------------------------|-------|
| Provides correct solution                                         | 3     |
| Provides an antiderivative, or equivalent merit                   | 2     |
| Provides an integral expression for the area, or equivalent merit | 1     |

Shaded area 
$$= \int_0^{\ln 2} e^{-2x} - \left(e^{-x} - \frac{1}{4}\right) dx$$

$$= \int_0^{\ln 2} e^{-2x} - e^{-x} + \frac{1}{4} dx$$

$$= \left[ -\frac{1}{2} e^{-2x} + e^{-x} + \frac{1}{4} x \right]_0^{\ln 2}$$

$$= \left( -\frac{1}{2} e^{-2\ln 2} + e^{-\ln 2} + \frac{1}{4} \ln 2 \right) - \left( -\frac{1}{2} + 1 + 0 \right)$$

$$= -\frac{1}{2} e^{\ln(2^{-2})} + e^{\ln(2^{-1})} + \frac{1}{4} \ln 2 - \frac{1}{2}$$

$$= -\frac{1}{2} \times \frac{1}{4} + \frac{1}{2} + \frac{1}{4} \ln 2 - \frac{1}{2}$$

$$= \frac{1}{4} \ln 2 - \frac{1}{8}$$

## Question 32 (b)

| Criteria                                                                 | Marks |
|--------------------------------------------------------------------------|-------|
| Provides correct solution                                                | 3     |
| • Uses the discriminant to find $k > -\frac{1}{4}$ , or equivalent merit | 2     |
| Attempts to form a quadratic equation, or equivalent merit               | 1     |

#### Sample answer:

We want the equation  $e^{-2x} = e^{-x} + k$  to have 2 solutions.

ie 
$$e^{-2x} - e^{-x} - k = 0$$

ie 
$$e^{-2x} - e^{-x} - k = 0$$
 has 2 solutions  
ie  $(e^{-x})^2 - (e^{-x}) - k = 0$  has 2 solutions

Using the quadratic formula,

$$e^{-x} = \frac{1 \pm \sqrt{1 + 4k}}{2}$$

For two real solutions we want 1 + 4k > 0, ie  $k > -\frac{1}{4}$ 

But for two solutions for  $e^{-x}$ , both the real solutions to the quadratic must be positive.

$$\therefore \quad \sqrt{1+4k} < 1$$

$$\therefore 1 + 4k < 1$$

$$\therefore$$
  $k < 0$ 

Hence 
$$-\frac{1}{4} < k < 0$$
.

# **2023 HSC Mathematics Advanced Mapping Grid**

#### Section I

| Question | Marks | Content                                                  | Syllabus outcomes |
|----------|-------|----------------------------------------------------------|-------------------|
| 1        | 1     | MA-S2 Descriptive Statistics and Bivariate Data Analysis | MA12-8            |
| 2        | 1     | MA-S1 Probability and Discrete Probability Distributions | MA11-7            |
| 3        | 1     | MA-F1 Working with Functions                             | MA11-1            |
| 4        | 1     | MA-F1 Working with Functions                             | MA11-1            |
| 5        | 1     | MA-C4 Integral Calculus                                  | MA12-7            |
| 6        | 1     | MA-C3 Applications of Differentiation                    | MA12-6            |
| 7        | 1     | MA-C2 Differential Calculus                              | MA12-6            |
| 8        | 1     | MA-E1 Logarithms and Exponentials                        | MA11-6            |
| 9        | 1     | MA-F1 Working with Functions                             | MA11-2            |
| 10       | 1     | MA-F2 Graphing Techniques                                | MA12-1            |

#### Section II

| Question | Marks | Content                                                  | Syllabus outcomes |
|----------|-------|----------------------------------------------------------|-------------------|
| 11       | 2     | MA- M1 Modelling Financial Situations                    | MA12-6            |
| 12 (a)   | 1     | MA-S1 Probability and Discrete Probability Distributions | MA11-7            |
| 12 (b)   | 2     | MA-S1 Probability and Discrete Probability Distributions | MA11-7            |
| 13       | 2     | MA-C4 Integral Calculus                                  | MA12-7            |
| 14       | 3     | MA-C2 Differential Calculus                              | MA12-6            |
| 15 (a)   | 2     | MA-M1 Modelling Financial Situations                     | MA12-2            |
| 15 (b)   | 3     | MA-M1 Modelling Financial Situations                     | MA12-2            |
| 16       | 4     | MA-T1 Trigonometry and Measure of Angles                 | MA11-3            |
| 17       | 2     | MA-C4 Integral Calculus                                  | MA12-7            |
| 18 (a)   | 3     | MA-S2 Descriptive Statistics and Bivariate Data Analysis | MA12-8            |
| 18 (b)   | 2     | MA-S2 Descriptive Statistics and Bivariate Data Analysis | MA12-8            |
| 18 (c)   | 1     | MA-S2 Descriptive Statistics and Bivariate Data Analysis | MA12-10           |
| 19 (a)   | 2     | MA-F2 Graphing Techniques                                | MA12-1            |
| 19 (b)   | 2     | MA-F2 Graphing Techniques                                | MA12-1, MA12-10   |
| 20       | 3     | MA-T2 Trigonometric Functions and Identities             | MA11-1            |
| 21       | 3     | MA-M1 Modelling Financial Situations                     | MA12-4            |
| 22       | 3     | MA- T1 Trigonometry and Measure of Angles                | MA11-3            |
| 23       | 4     | MA-S3 Random Variables                                   | MA12-8            |
| 24 (a)   | 1     | MA-F1 Working with Functions                             | MA11-2            |
| 24 (b)   | 4     | MA-C3 Applications of Differentiation                    | MA12-3, MA12-10   |
| 25 (a)   | 1     | MA-M1 Modelling Financial Situations                     | MA12-10           |
| 25 (b)   | 3     | MA-M1 Modelling Financial Situations                     | MA12-4            |
| 25 (c)   | 2     | MA-M1 Modelling Financial Situations                     | MA12-2            |

| Question | Marks |       | Content                                                  | Syllabus outcomes |
|----------|-------|-------|----------------------------------------------------------|-------------------|
| 26 (a)   | 2     | MA-C4 | Integral Calculus                                        | MA12-3            |
| 26 (b)   | 2     | MA-T3 | Trigonometric Functions and Graphs                       | MA12-5            |
| 27 (a)   | 3     | MA-F2 | Graphing Techniques                                      | MA12-1            |
| 27 (b)   | 2     | MA-F2 | Graphing Techniques                                      | MA12-1            |
| 28       | 4     | MA-C1 | Introduction to Differentiation, MA-C4 Integral Calculus | MA12-3            |
| 29 (a)   | 2     | MA-S3 | Random Variables                                         | MA12-8            |
| 29 (b)   | 2     | MA-S3 | Random Variables                                         | MA12-8            |
| 29 (c)   | 2     | MA-S3 | Random Variables                                         | MA12-8            |
| 30 (a)   | 3     | MA-C3 | Applications of Differentiation                          | MA12-6            |
| 30 (b)   | 2     | MA-C3 | Applications of Differentiation                          | MA12-3            |
| 31 (a)   | 1     | MA-S1 | Probability and Discrete Probability Distributions       | MA11-9            |
| 31 (b)   | 2     | MA-S1 | Probability and Discrete Probability Distributions       | MA11-7            |
| 31 (c)   | 2     | MA-S1 | Probability and Discrete Probability Distributions       | MA11-7            |
| 32 (a)   | 3     | MA-C4 | Integral Calculus                                        | MA12-7            |
| 32 (b)   | 3     | MA-F1 | Working with Functions                                   | MA11-1            |