

Mathematics Advanced

HSC Marking Feedback 2023

General feedback

Students should:

- show relevant mathematical reasoning and/or calculations
- read the question carefully to ensure that they do not miss important components of the question
- have a clear understanding of key words in the question and recognise the intent of the question and its requirements, such as show, solve, evaluate, hence, calculate, derive
- use the Reference Sheet where appropriate
- ensure the solution is legible and follows a clear sequence
- engage with any stimulus material provided and refer to it in their response when required by the question
- check their solution answers the question
- round off numerical solutions only at the final step of the solution
- construct graphs neatly, with precision and display all relevant information as required by the question
- interpret information presented in graphs across a range of contexts
- understand when to use relevant calculator functions
- carefully note any information in the questions which supplies units of measurement.

Section II

Question 11

In better responses, students were able to:

- accurately write down the formula for the term of an arithmetic sequence, or if listing the fifteen terms, ensure that each is correct and that all terms are listed
- substitute the three variables accurately into the correct formula, and apply the correct operations of addition, subtraction and multiplication.

- making use of the Reference Sheet to apply the correct formula: Tn = a + (n-1)d
- knowing which formula on the Reference Sheet is for the term of an arithmetic sequence.

Question 12 (a)

In better responses, students were able to:

• clearly show the sum of the product of x and P(X = x).

Areas for students to improve include:

- knowing how to multiply the values in the two rows of the table to generate xP(x), and then finding the sum to state the expected value
- understanding the difference between mode and mean or expected value
- understanding a 'show that' in the question requires working out to be shown.

Question 12 (b)

In better responses, students were able to:

- use the values in the table to calculate variance, and then find the standard deviation
- use a calculator to correctly to find the standard deviation.

Areas for students to improve include:

- using the correct formulae for variance
- finding the standard deviation by taking the square root of the variance
- using a calculator to correctly to find the standard deviation.

Question 13

In better responses, students were able to:

- demonstrate their understanding by finding the primitive function from the derivative of an exponential function
- correctly substitute *t* = 0 and *P* = 4000 to evaluate the constant.

Areas for students to improve include:

- making use of the Reference Sheet to correctly find the integration of an exponential function
- evaluating the constant of integration
- using subtraction when solving $4000 = 1500e^{2(0)} + c$, and not division
- understanding that $e^0 = 1$.

Question 14

- were able to find the derivative using the Chain rule
- find the gradient of tangent at x = 0
- substitute the coordinates of the point and the value of the gradient into a formula for the equation of a straight line.

- using the Chain rule
- not expanding the original function nor the first derivative
- knowing that, when finding the equation of the tangent, a value is required for the gradient, and not an expression in terms of *x*
- knowing that the tangent is a straight line.

Question 15 (a)

In better responses, students were able to:

- use the table provided to determine the factor 13.181 and then divide \$450 000 by 13.181
- identify the interest factor from the table provided
- divide the FV by the interest factor.

Areas for students to improve include:

- recognising that identification of this factor is the use of the rate and periods so that these do not need to be used again in the calculation of the solution
- setting up an equation to help identify when there should be division or multiplication
- highlighting the interest factor in the table
- using compound interest formula or geometric series correctly.

Question 15 (b)

In better responses, students were able to:

- demonstrate the conversion of the rate and the periods to four times a year
- select the correct factor from the table and multiply it by \$8535
- convert the period to 40 and interest rate to 1.5% or equivalent
- identify the interest factor from the table.

Areas for students to improve include:

- identifying that every three months is four times a year
- using the converted rate and period to identify the factor from the table
- making use of the table of factors provided, not making errors in creating/using a geometric series.

Question 16

In better responses, students were able to:

 interpret the question correctly to identify the main parts and evaluate the length of arc PQ and the length of line segment PQ

- set their working out clearly and identify the parts they were calculating, and show their rounded answers to at least three decimal places to assist the calculation for the perimeter
- identify the arc length was 110/360 of a circle and not a semi-circle
- correctly substitute values into the correct formulas (the sine or cosine rule for line segment *PQ* and arc length formula for arc *PQ*) and show full substitution
- round the final solution to 1 decimal place.

- selecting and demonstrating appropriate substitutions into the required formula from the Reference Sheet
- understanding that the question requires the calculation of the perimeter of the shape, therefore no area formulas were needed
- using the square root when using the cosine rule
- realising the arc *PQ* has a radius of 2.1 m and is not a semi-circle with interval *PQ* as the diameter
- writing the formula they are using before substituting
- adding all sections when calculating the perimeter.

Question 17

In better responses, students were able to:

- identify the correct method of integration required
- correctly divide fractions to achieve the solution.

Areas for students to improve include:

- recognising the relationship between the derivative and integral
- using the Reference Sheet to apply the correct integral formula.

Question 18 (a)

In better responses, students were able to:

- calculate both means showing all calculations
- accurately plot the coordinates of the means and *y*-intercept
- use correct mathematical notation.

- reading the question carefully to determine the means for each quantity
- · accurately plotting coordinates on the intersection of the grid lines
- recognising that the initial quantity is the *y*-intercept
- reading the grid scale correctly.

Question 18 (b)

In better responses, students were able to:

- calculate the gradient using $\frac{rise}{run}$
- recognise the *y*-intercept
- correctly substitute into y = mx + c.

Areas for students to improve include:

- writing an equation not an expression
- not interpreting the data as bivariate and attempting to use the calculator to find the equation of the regression line
- using the two coordinates from their graph to find the gradient of the line and not reading two inaccurate coordinates off their regression line.

Question 18 (c)

In better responses, students were able to:

- comment on the prediction of gas usage being negative, which is not possible
- recognise and explain that using extrapolation is inaccurate.

Areas for students to improve include:

- relating their answer to the context of the question, that is, gas usage and temperatures
- providing an accurate explanation relevant to the regression line.

Question 19 (a)

In better responses, students were able to:

- choose an appropriate scale for the straight line and parabola
- sketch a parabolic shape and points of intersection with the line
- label the vertex of the parabola
- label the *y*-intercept of the parabola.

- using a ruler to draw straight lines
- demonstrating an understanding of the appropriate scale
- identifying key points to improve the care and accuracy of each sketch
- knowing the concavity of a parabola from its equation.

Question 19 (b)

In better responses, students were able to:

- understand the term 'Hence' meant to solve the equation by using the work completed in Q19(a)
- expand a binomial product and then solve the quadratic inequality $x^2 + 3x 4 < 0$
- express their solutions as a combined inequality or use bracket notation.

Areas for students to improve include:

- correctly solving quadratic inequalities
- demonstrating the connection between algebra and graphs
- interpreting the inequality to be solved, that is, finding the solution for x when the straight line is below the parabola
- understanding inequality symbols and express their solution using the correct notation.

Question 20

In better responses, students were able to:

- adjust the domain to include all possible values of θ .
- recognise the solutions for $\theta-60^\circ$ lie in the third and fourth quadrants
- provide all three solutions in degrees.

Areas for students to improve include:

- demonstrating knowledge about changing the domain according to the function in the question
- understanding that if the question is posed in degrees, the solution must be presented in degrees
- recognising that 0° and 360° are the same angle on the unit circle.

Question 21

In better responses, students were able to:

- use the Reference Sheet to identify and use the correct Geometric Progression formulas
- solve simultaneous equations involving index notation
- identify the positive and negative values for the common ratio and the respective first terms.

- understanding the differences between an Arithmetic and Geometric sequence
- understanding that when solving an equation with an 'even power', that there will be two
 possible answers
- making 'r' the subject complicates the simultaneous equation solution.

Question 22

In better responses, students were able to:

- efficiently find the angle AEM by only finding AM and then using tangent ratio
- view the diagram in a 3-dimensional (3D) context
- label the sides and angles they were finding in the diagram or in their solution.

Areas for students to improve include:

- understanding the properties of quadrilaterals and 3D shapes
- using correct angle and triangle notation in their solution
- using exact values throughout the calculations
- not assuming scale in the diagram and making 45-degree angles appear in the working.

Question 23

In better responses, students were able to:

- calculate the correct z-score using the formula provided on the Reference Sheet
- use the table to obtain the correct probability
- correctly find the proportion of koalas greater than 11.93kg, recognising that the value from the table represents the probability of the weight being less than 11.93kg
- find the number of koalas with weight greater than 11.93kg.

Areas for students to improve include:

- accessing the provided table to find the probability after calculating the *z*-score
- knowing when to use the *z*-score formula and table given opposed to using the normal distribution (empirical rule) to calculate an area under a curve
- completely answering the question by reading what was required, that is, the number of koalas greater than 11.93kg.

Question 24 (a)

In better responses, students were able to:

- identify the side lengths of the garden in terms of x
- find an expression for the area of the garden in terms of x and y
- equate the area in terms of x and y with the value given for the area of the garden
- rearrange their area equation to make y the subject
- identify the dimensions of the garden as (x 2) and (y 1).

- using correct algebraic processes to change the subject of their equation
- recognising the importance of brackets to indicate the correct order of operations

• understanding they were not solving an equation as many students tried to find a numerical value for *y* or *x* from the equation provided.

Question 24 (b)

In better responses, students were able to:

- establish an equation for the area of the path in terms of x
- differentiate the area of the path and solve their derivative to find the possible dimensions
- eliminate solutions to the derivative of the area of the path that did not fit the context
- verify that their solution gives the minimum area of the path
- use numerical values in the first derivative test to determine a minimum.

Areas for students to improve include:

- interpreting what is being optimised to develop an equation to represent it
- simplifying the algebraic expression for the area of the path
- using correct algebraic processes to simplify the derivative and solve for A' = 0
- identifying, from the context, which solution is relevant
- demonstrating that the solution gives a minimum area
- · creating a formula from information provided
- using brackets, expanding brackets, operating with negative integers
- using appropriate notation such as A, A', A" to help identify the steps.

Question 25 (a)

In better responses, students were able to:

• show the connection between A_1 and A_2 by writing either $A_2 = A_1 \times 1.004 - M$ or $A_2 = (10000 \times 1.004 - M) \times 1.004 - M$.

Areas for students to improve include:

- · demonstrating understanding of how financial series are built term by term
- showing adequate steps in the working to reflect their reasoning.

Question 25 (b)

- write an explicit and complete expression for A_n showing a geometric series
- use the sum of a Geometric Progression series correctly to show $A_n = 10000(1.004)^n M\left(\frac{1.004^n 1}{0.004}\right)$
- use algebra to expand and simplify to show all relevant steps.

- using the pattern from Q25(a) to show the expression of A_n
- carefully identifying the number of terms in the geometric series
- demonstrating skills in expanding, rearranging, and factorising to arrive at the final expression
- knowledge of fractions to show $\frac{1}{0.004} = 250$.

Question 25 (c)

In better responses, students were able to:

- identify the substitution of n = 100 and $A_n = 0$ into the expression from Q25(b)
- manipulate the expression to obtain the value for M.

Areas for students to improve include:

- ullet using the appropriate values of n and A_n to substitute into the expression
- avoiding arithmetic errors when rearranging equations and inequations.

Question 26 (a)

In better responses, students were able to:

- give the correct trigonometric primitive function
- find the constant using initial conditions
- write the required trigonometric equation.

Areas for students to improve include:

- manipulating algebraic fractions correctly
- showing the substitution of the initial conditions
- solving simple equations
- using the information provided on the Reference Sheet more effectively when finding the expression for x(t).

Question 26 (b)

- calculate the number of periods in the given time
- find the period of the trigonometric function
- sketch either the rate of change trigonometric function or the displacement expression in Q26a)
- solve trigonometric functions involving fractions over the required domain
- understand when the maximum and minimum distances from the camera occur.

- correctly calculating the period of a trigonometric function
- understanding the relevance of the period of a trigonometric function to a real-world situation
- providing the correct solution of a trigonometric equation, over an adjusted domain, with multiple solutions.

Question 27 (a)

In better responses, students were able to:

- recognise the horizontal and vertical translations of the function and the relationship to b
 and c
- substitute b and c with a given coordinate into the function to find a
- use the gradient to calculate the dilation and recognise the sign of a as negative.

Areas for students to improve include:

- understanding the vertical and horizontal transformation of the function
- recognising that the gradient of this function was the dilation represented by a
- avoiding the use of simultaneous equations to solve algebraically.

Question 27 (b)

In better responses, students were able to:

- recognise the need to calculate two distinct gradients from the origin
- calculate the gradients so that the line intersects the absolute value function twice
- write the correct inequality.

Areas for students to improve include:

- understanding that the line y = mx will pass through (0,0)
- using the understanding of gradients to find the required values rather than simultaneous equations to find points of intersection
- using the correct inequality symbols.

Question 28

- recognise that the tangents at T and R have the same gradient
- equate $\frac{dy}{dx} = 1$ and solve the quadratic to find the x coordinate of R
- find the anti-derivation of $\frac{dy}{dx}$ and calculate the correct value of c
- correctly substitute the x-coordinate of R into y = f(x) to find the y coordinate of R.

- writing +c in their integration
- recognising that if the tangent is not horizontal, then *R* is not a stationary point.

Question 29 (a)

In better responses, students were able to:

- expand the probability density function so that the derivative can be easily determined
- calculate the mode as the *x*-coordinate of the maximum turning point of the probability density function
- identify the mode by substituting the possible turning point of *x* values into the probability density function and comparing the *y* values, rather than first or second derivative testing.

Areas for students to improve include:

- distinguishing the difference between a probability density function and a cumulative distribution function
- applying correct differentiation techniques and simplifying functions before differentiating
- taking care with negative values when using the product rule for differentiation
- using an appropriate concavity test if there is more than one solution.

Question 29 (b)

In better responses, students were able to:

- integrate the probability density function using limits of 0 to *x* to obtain the cumulative distribution function
- expand the probability density function before integrating the expression.

Areas for students to improve include:

- recognising the relationship between a probability density function and a cumulative distribution function
- knowing what the cumulative distribution function represents.

Question 29 (c)

- correctly substitute the mode into the cumulative distribution function
- understand that the median occurs at the point where the area under the probability density function is 0.5
- conclude the calculation of the cumulative distribution function for the mode is greater than the median value of the cumulative distribution function.

- understanding the significance of the cumulative distribution function as a measure of the area under the probability density function
- remembering the total area under the probability density function is 1 square unit.

Question 30 (a)

In better responses, students were able to:

- · differentiate exponential and trigonometric functions
- use the product rule
- solve an equation containing exponentials and trigonometric functions
- calculate the y-values of the stationary points
- use exact values in their answer.

Areas for students to improve include:

- solving a trigonometric equation for all angles within a given domain
- recognising that $e^{-x} = 0$ has no solutions
- finding the corresponding y-values to the stationary point x-values
- converting between degrees and radians
- recognising that if the domain is in radians, then so should the x-values.

Question 30 (b)

In better responses, students were able to:

- sketch a single, smooth graph for the function in part (a), showing stationary points and xintercepts
- correctly label their stationary points and *x*-intercepts.

- calculating the correct *x*-intercepts
- sketching a smooth curve and carefully labelling the necessary features
- considering the scale when sketching a graph
- knowing what a stationary point should look like in a sketch
- reading the question carefully to make sure that all the required information is shown in the diagram.

Question 31 (a)

In better responses, students were able to:

- demonstrate the difference between an independent and dependent event
- know how one event impacts the other
- use $P(F) \neq P(F|S)$ to show that Kim's availability next Friday changes, given Kim is available on Saturday.

Areas for students to improve include:

- recognising the difference between an independent and dependent event
- understanding the meaning of conditional probability notation.

Question 31 (b)

In better responses, students were able to:

- set out a well-structured response with the aid of conditional probability rules
- calculate the probability intersection of Saturday and Friday.

Areas for students to improve include:

- understanding how to use conditional probability in the context of a show question
- identifying this dependent multi-event probability
- recognising that $P(S \cap F)$ and $P(F \cap S)$ are the same as they represent where the sets intersect.

Question 31 (c)

In better responses, students were able to:

• find the complement of all four students available.

Areas for students to improve include:

- understanding the technique of complementary probability theory when the expression 'at least one...' is required it is equivalent to '1 Probability (none)'
- finding the complement of four students and not just one.

Question 32 (a)

In better responses, students were able to:

- write an integrand for the area between two curves
- integrate the resulting expression with the correct sign for each term in the expression
- substitute the correct limits to find the area that was given.

Areas for students to improve include:

reviewing the working when using positive and negative signs

- carefully subtracting functions in the correct order to find the area between to curves
- working with exponentials with logarithmic powers
- showing substitution of limits, and fully evaluating the resulting anti-derivative to show the area given.

Question 32 (b)

In better responses, students were able to:

- equate the two equations and obtain a quadratic expression equation in e^{-x}
- apply the quadratic formula to determine the roots of the exponential function in terms of *k*
- for two solutions the discriminant, 1+ 4k > 0 and stated. $k > -\frac{1}{4}$
- for $e^{-x} > 0$, u sed $1 \sqrt{1 + 4k} > 0$ and found k < 0.

- solving simultaneous equation using quadratic formula in a general form of a quadratic equation
- understanding that for two points of intersection, the discriminant is greater than zero
- recognising that e^{-x} is positive is also a part of the solution.