

2017 HSC Mathematics General 2 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	С
2	D
3	A
4	С
5	В
6	D
7	A
8	В
9	A
10	D
11	A
12	С
13	A
14	В
15	A
16	D
17	В
18	A
19	D
20	В
21	C C
22	
23	D
24	D
25	С

Section II

Question 26 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$$0.27 \times 20$$

= \$5.40

Question 26 (b)

Criteria	Marks
Provides correct answer or CNE	2
Makes progress towards correct answer	1

Sample answer:

Cost =
$$$20 + $0.50 \times 3 + $0.70 + $1.40 + $3.50$$

= $$27.10$

Question 26 (c)

Criteria	Marks
Provides correct solution	2
Makes progress towards correct solution	1

Sample answer:

Let *N* be the number of goats.

$$\frac{16}{45} = \frac{80}{N}$$

$$N = \frac{80 \times 45}{16}$$

$$= 225$$

: The estimated number of goats the farmer has on his property is 225.

Question 26 (d)

Criteria	Marks
Provides correct solution	2
Uses correct trig equation or equivalent merit	1

Sample answer:

Let *x* be the required depth.

$$\sin 2^{\circ} = \frac{x}{15000}$$

= 15000 \sin 2^{\circ}
= 523.4...
= 523 mm (to the nearest mm)

Question 26 (e)

Criteria	Marks
Provides correct solution	3
Makes significant progress towards the correct solution	2
Provides correct cost or income, or equivalent merit	1

Question 26 (f) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

4 goals

Question 26 (f) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

Round 3

Question 26 (g)

Criteria	Marks
Provides correct solution	3
Makes significant progress towards the correct solution	2
Uses the simple interest formula correctly, or equivalent merit	1

Sample answer:

Amount borrowed = 7990 - 500

= \$7490

Interest = $7490 \times 0.07 \times 2$

= \$1048.60

Repayment $=\frac{7490+1048.60}{200520}$

 2×52

= \$82.10 per week

Question 27 (a) (i)

	Criteria	Marks
Г	Provides correct answer or CNE	1

Sample answer:

Mean = 200.875 kL

Question 27 (a) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

Standard deviation = 127.35... = 127.4 kL (1 decimal place)

Question 27 (b)

Criteria	Marks
Provides correct solution	2
Calculates a correct conversion of units	1

Sample answer:

3 terabytes =
$$3 \times 2^{40}$$
 bytes
20 megabytes = 20×2^{20} bytes
Number of files = $\frac{3 \times 2^{40}}{20 \times 2^{20}}$
= 157 286.4

∴ 157 286 files can fit.

Question 27 (c) (i)

	Criteria	Marks
Ī	Provides correct answer or CNE	1

Sample answer:

Future value = $12\,000 \times 5.4163$ = \$64 995.60

Question 27 (c) (ii)

Criteria	Marks
Provides correct answer or CNE	1

Sample answer:

Interest earned = $64\,995.60 - (5 \times 12\,000)$ = \$4995.60

Question 27 (d) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

25°W

Question 27 (d) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

Time difference $=\frac{30}{15}$

= 2 hours

 \therefore Time on island B = 10 am - 2 hours

= 8 am

Question 27 (d) (iii)

Criteria	Marks
Provides correct solution	3
Provides correct answer in hours, or equivalent merit	2
Calculates distance, or equivalent merit	1

Sample answer:

Distance
$$= \frac{30}{360} \times 2\pi \times 6400$$

$$= 3351.0... \text{ km}$$

$$= \frac{3351.0...}{40} \text{ hours}$$

$$= 83.7... \text{ hours}$$

$$= \frac{83.7...}{24} \text{ days}$$

$$= 3.490658504 \text{ days}$$

$$= 3 \text{ days} + (0.490658504 \times 24) \text{ hours}$$

$$= 3 \text{ days} + 11.7... \text{ hours}$$

$$= 3 \text{ days} 12 \text{ hours} \text{ (nearest hour)}$$

Question 27 (e)

Criteria	Marks
Provides correct solution	4
• Attempts to determine the maximum number of bottles based on the number of standard drinks (<i>N</i>)	3
• Solves for <i>N</i> , or equivalent merit	2
Substitutes into correct formula, or equivalent merit	1

Sample answer:

$$BAC_{\text{male}} = \frac{10N - 7.5H}{6.8M}, \quad BAC_{\text{male}} = 0.05, H = 5, M = 90$$

$$0.05 = \frac{10N - 7.5 \times 5}{6.8 \times 90}$$

$$6.8 \times 90 \times 0.05 = 10N - 7.5 \times 5$$

$$10N = 7.5 \times 5 + 6.8 \times 90 \times 0.05$$

$$N = 6.81 \text{ ie } 6.81 \text{ standard drinks}$$
Number of bottles
$$= \frac{6.81}{0.8}$$

$$= 8.5125$$

:. Rhys can drink a maximum of 8 complete bottles.

Question 28 (a) (i)

Criteria	Marks
Provides correct answer, or CNE	1

Sample answer:

$$F = \frac{9C}{5} + 32, C = -20$$

$$F = \frac{9 \times (-20)}{5} + 32$$

Temperature = -4 degrees Fahrenheit

Question 28 (a) (ii)

Criteria	Marks
• Provides correct solution for C or F	2
Makes progress towards correct solution	1

Sample answer:

$$C = \frac{9C}{5} + 32$$

$$5C = 9C + 160$$

$$-160 = 4C$$

$$C = -40$$

$$F = -40$$

Question 28 (a) (iii)

Criteria	Marks
Provides correct explanation	1

Sample answer:

The two lines intersect at (-40, -40).

Question 28 (b) (i)

	Criteria	Marks
Ī	Provides correct answer or CNE	1

Sample answer:

$$\frac{5 \times 4}{2}$$
 = 10 groups of two

Question 28 (b) (ii)

Criteria	Marks
Provides correct answer or CNE	1

Sample answer:

Four of the ten possible groups include Mary (ie a group including Mary and one of the other 4 team members).

The probability
$$=\frac{4}{10}$$

= 0.4

Question 28 (c)

Criteria	Marks
Provides correct solution	3
Provides balance after one month, or equivalent merit	2
Calculates interest, or equivalent merit	1

Amount owing after first month,
$$A_1 = 100\,000 \times \left(1 + \frac{0.12}{12}\right) - 1029$$

$$= \$99\,971$$
 Amount owing after second month,
$$A_2 = 99\,971 \times \left(1 + \frac{0.12}{12}\right) - 1029$$

$$= \$99\,941.71$$

Question 28 (d)

Criteria	Marks
Provides correct solution	2
Provides one correct step, or equivalent merit	1

Sample answer:

$$x^{2} = yp - 1$$

$$x^{2} + 1 = yp$$

$$y = \frac{x^{2} + 1}{p}$$

Question 28 (e) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

From the graph, the income is maximised when the increase in ticket price is \$6.

 \therefore the ticket price should be \$8 + \$6 = \$14

Question 28 (e) (ii)

Criteria	Marks
Provides correct answer	1

$$200 - 10 \times 6 = 140 \text{ tickets}$$

Question 28 (e) (iii)

Criteria	Marks
Provides correct solution	2
Calculates cost or income, or equivalent merit	1

Sample answer:

Income = $140 \times 14

= \$1960

Cost = $140 \times \$2 + \500

= \$780

Profit = \$1960 - \$780

= \$1180

Question 29 (a) (i)

Criteria	Marks
Provides correct solution	2
Makes progress towards correct solution	1

Sample answer:

$$h = \frac{200}{4}$$
= 50
$$V \approx \frac{50}{3}(0 + 4 \times 140 + 270) + \frac{50}{3}(270 + 4 \times 300 + 360)$$
= 44 333 \frac{1}{3} m^3
= 44 333 m^3 (nearest m^3)

Question 29 (a) (ii)

Criteria	Marks
Provides correct solution	2
Makes progress towards correct solution	1

$$2 \text{ km}^2 = 2 \times 1000 \times 1000$$

$$= 2000000 \text{ m}^2$$

$$V = Ah$$

$$44333 = 2000000 \times h$$

$$h = \frac{44333}{2000000}$$

$$= 0.0221... \text{ m}$$

$$= 22 \text{ mm (nearest mm)}$$

Question 29 (b)

Criteria	Marks
Provides correct solution	3
Makes significant progress towards correct solution	2
Makes progress towards correct solution	1

Sample answer:

Tax payable =
$$3572 + 0.325(86725 - 37000)$$

= \$19732.63
Medicare levy = $2\% \times 86725$
= \$1734.50
Total payable = $19732.63 + 1734.50$
= \$21467.13
∴ Net income = $86725 - 21467.13$

= \$65 257.87

Question 29 (c) (i)

Criteria	Marks
Provides correct solution	2
Provides correct numerator or denominator, or equivalent merit	1

Sample answer:

Number of students surveyed =
$$3520$$

Probability = $\frac{2500}{3520}$
= $\frac{125}{176}$

Question 29 (c) (ii)

Criteria	Marks
Provides correct justification with calculations	2
Identifies correct numbers from table, or equivalent merit	1

Sample answer:

Country students who have water skied: $\frac{70}{870} \times 100 = 8.04...\%$ City students who have water skied: $\frac{150}{2650} \times 100 = 5.66...\%$

:. The claim in the newspaper article is true.

Question 29 (d) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

15th mark is 4.

16th mark is 8.

$$Median = \frac{4+8}{2}$$
$$= 6$$

Question 29 (d) (ii)

Criteria	Marks
Provides correct solution	2
Calculates correct boundaries, or equivalent merit	1

Sample answer:

Mean minus standard deviation = 5.4 - 4.22

= 1.18

Mean plus standard deviation = 5.4 + 4.22

= 9.62

Percentage of marks between 1.18 and 9.62
$$= \frac{2+2+2+1+6}{30}$$
$$= \frac{13}{30}$$
$$= 43.3\% \text{ (1 decimal place)}$$

Question 29 (d) (iii)

Criteria	Marks
Provides correct explanation	1

Sample answer:

The dot plot does not show a normally distributed data set, so the statement is not relevant.

Question 30 (a)

Criteria	Marks
Provides correct solution	2
Makes progress towards correct solution	1

Sample answer:

Interquartile range
$$(IQR) = Q_U - Q_L$$

 $= 16 - 10$
 $= 6$
Lower bound $= Q_L - 1.5 \times IQR$
 $= 10 - 1.5 \times 6$
 $= 1$
Upper bound $= Q_U + 1.5 \times IQR$
 $= 16 + 1.5 \times 6$
 $= 25$
 \therefore Range $= 25 - 1$
 $= 24$

Question 30 (b)

Criteria	Marks
Provides correct solution	2
Writes a correct equation, or equivalent merit	1

Sample answer:

Let *C* be the cost of the jewellery box.

Let h be the height of the jewellery box.

$$C = kh^3$$
 where k is a constant.

$$50 = k \times 10^3$$

$$\therefore k = 0.05$$

When h=12

cost,
$$C = 0.05 \times 12^3$$

= \$86.40

Question 30 (c) (i)

Criteria	Marks
Provides correct solution	2
Substitutes correctly into cosine rule, or equivalent merit	1

Sample answer:

$$AC^2 = 13^2 + 5^2 - 2 \times 5 \times 13 \times \cos 135^\circ$$

= 285.92...
 $AC = \sqrt{285.92...}$
= 16.9...
= 17 km (nearest kilometre)

Question 30 (c) (ii)

Criteria	Marks
Provides correct solution	3
Calculates an angle in the triangle, or equivalent merit	2
Substitutes correctly into sine rule or cosine rule, or equivalent merit	1

Sample answer:

$$\frac{\sin A}{13} = \frac{\sin 135^{\circ}}{17}$$

$$\sin A = \frac{13\sin 135^{\circ}}{17}$$

$$= 0.5407$$

$$A = 32.7...^{\circ}$$

$$= 33^{\circ} \text{ (nearest degree)}$$

The bearing of school C from school A is $180^{\circ} + 33^{\circ} = 213^{\circ}$.

Question 30 (d) (i)

	Criteria			
Ī	Provides correct answer, or CNE	1		

Sample answer:

Speed (y) =
$$2.125 \times 5 + 2.0375$$

= 12.6625 km/h

Question 30 (d) (ii)

Criteria	Marks
Provides correct solution	2
Identifies correct formula, or equivalent merit	1

Sample answer:

gradient =
$$r \times \frac{\text{standard deviation of } y \text{ scores}}{\text{standard deviation of } x \text{ scores}}$$

2.125 = $r \times \frac{2}{0.8}$
 $\therefore r = 0.85$

Question 30 (e)

Criteria	Marks
Provides correct solution	3
Makes significant progress towards correct solution	2
Calculates the height of the cone, or equivalent merit	1

Radius of cone,
$$r = \sqrt{4^2 - 2^2}$$

 $= \sqrt{12}$ cm
Height of cone, $h = 15 - (4 + 2)$
 $= 9$ cm
Volume of cone, $V = \frac{1}{3}\pi r^2 h$
 $= \frac{1}{3}\pi (\sqrt{12})^2 \times 9$
 $= 113.09...$
 $= 113$ cm³ (to nearest cm³)

NESA

2017 HSC Mathematics General 2

Section I

Mapping Grid

Question	Marks		Content	Syllabus outcomes
1	1	DS4 (•5)	Find median from a box-and-whisker plot p80	MG2H-2
2	1	FSDr3 (•1)	Calculate distance, given speed and time p68	MGP-5
3	1	FSHe3 (•1)	Life expectancy from a graph p112	MG2H-2
4	1	DS1 (•5)	Distinguish between different sample types p32	MGP-10
5	1	DS6 (•6)	Expected number p84	MG2H-2
6	1	FM1 (•2)	Calculating fortnightly wage p24	MGP-6
7	1	AM1 (•4)	Substitution into a formula to find the subject p52	MGP-3
8	1	MM5 (•2)	Trigonometric ratios to find an angle with rounding p90	MG2H-5
9	1	AM3 (•6)	Solving linear equations p100	MG2H-3
10	1	FM2 (•5)	Using the compound interest formula p26	MGP-6
11	1	FSDr1 (•1)	Percentage decrease in car value p64	MGP-6
12	1	FSHe1 (•7)	Interpret the size of correlation coefficient from a graph p108	MG2H-2
13	1	DS5 (•2)	Calculate <i>z</i> -score p82	MG2H-7
14	1	FSDr2 (•3)	Compare fuel consumption of various vehicles p66	MGP-5
15	1	PB1 (•8)	Determine theoretical probability p48	MGP-8
16	1	FSRe3 (•9)	Reducing energy use p120	MG2H-2
17	1	AM4 (•9)	Identifying point of intersection of graphs p102	MG2H-3
18	1	MM2 (•5)	Volume of a prism p42	MGP-4
19	1	FSHe2 (•5)	Calculate required child dosage p110	MG2H-5
20	1	AM2 (•13)	Generalisation of linear number patterns p54	MGP-3
21	1	MM1 (•2)	Degree of accuracy of a measurement p40	MGP-5
22	1	MM4 (•10)	Volume of an annular cylinder p88	MG2H-4
23	1	FSCo2 (•2)	Convert units of data storage p60	MGP-5
24	1	PB2 (•7)	Calculate multi-stage probability p96	MG2H-8
25	1	MM6 (•1)	Calculate arc length p92	MG2H-4

Section II

Question	Marks		Content	Syllabus outcomes
26 (a)	1	FSRe3 (•4)	Electricity cost p120	MG2H-5
26 (b)	2	FSCo1 (•3)	Cost of a phone bill p58	MGP-6
26 (c)	2	DS6 (•4)	Capture–recapture p84	MG2H-3
26 (d)	2	MM3 (•6)	Angle of depression p44	MGP-4
26 (e)	3	FM2 (•10)	Shares p26	MGP-6
26 (f) (i)	1	DS4 (•15)	Area chart p80	MG2H-7
26 (f) (ii)	1	DS4 (•15)	Area chart p80	MG2H-7
26 (g)	3	FM4 (•2)	Flat-rate loan p74	MG2H-6
27 (a) (i)	1	FSRel (•2)	Mean of water use p116	MGP-1
27 (a) (ii)	1	FSRel (•2)	Standard deviation of water use p116	MG2H-7
27 (b)	2	FSCo2 (•3)	Number of files on a disc p60	MGP-5
27 (c) (i)	1	FM5 (•2)	FV annuity p76	MG2H-6
27 (c) (ii)	1	FM5 (•6)	Interest on an annuity p76	MG2H-6
27 (d) (i)	1	MM6 (•4)	Longitude value p92	MG2H-4
27 (d) (ii)	1	MM6 (•7)	Time calculation p92	MG2H-4
27 (d) (iii)	3	MM6 (•5)	Using speed to calculate time	MG2H-5
27 (e)	4	FSDr3 (•4)	Male BAC, number of drinks in given time p68	MGP-3
28 (a) (i)	1	AM1 (•4)	Substitution to convert from C to F p52	MGP-3
28 (a) (ii)	2	AM4 (•10)	Solving simultaneous equations p102	MG2H-3
28 (a) (iii)	1	AM4 (•9)	Interpreting a solution p102	MG2H-3
28 (b) (i)	1	PB2 (•5)	Combinations p96	MG2H-8
28 (b) (ii)	1	PB2 (•7)	Probability p96	MG2H-8
28 (c)	3	FM4 (•3)	Reducible loan without repayment table p74	MG2H-6
28 (d)	2	AM3 (•8)	Change the subject of equation p100	MG2H-3
28 (e) (i)	1	AM5 (•1)	Location of maximum value from quadratic graph p104	MG2H-3
28 (e) (ii)	1	AM5 (•1)	Interpreting written information p104	MG2H-3
28 (e) (iii)	2	AM5 (•1)	Calculating profit p104	MG2H-3
29 (a) (i)	2	FSRe2 (•7)	Simpson's rule (volume) p118	MG2H-4
29 (a) (ii)	2	FSRe2 (•6)	Catchment area p118	MG2H-4

Question	Marks		Syllabus outcomes	
29 (b)	3	FM3 (•4)	Tax table calculation p28	MG2H-6
29 (c) (i)	2	DS4 (•18)	Probability with two-way table p80	MG2H-2
29 (c) (ii)	2	DS4 (•18)	Justifying opinion with calculations p80	MG2H-2
29 (d) (i)	1	DS3 (•1)	Median p36	MGP-7
29 (d) (ii)	2	DS5 (•2)	Using mean and standard deviation p82	MG2H-7
29 (d) (iii)	1	DS5 (•4)	Normal distribution explanation p82	MG2H-7
30 (a)	2	DS4 (•5)	Outliers p80	MG2H-7
30 (b)	2	AM5 (•6)	Variation p104	MG2H-3
30 (c) (i)	2	MM5 (•7)	Cosine rule p90	MG2H-4
30 (c) (ii)	3	MM5 (•11)	Calculate bearing p90	MG2H-4
30 (d) (i)	1	AM1 (•4)	Substitution p52	MGP-3
30 (d) (ii)	2	FSHe1 (•5)	Correlation from least–squares equation p108	MG2H-7
30 (e)	3	MM4 (•8)	Volume of a cone p88	MG2H-4