

Mathematics Standard 2

HSC Marking Feedback 2019

Question 16

Students should:

- identify the correct values to substitute into the appropriate volume of a sphere formula selected from the Reference Sheet
- clearly show every step of the process in calculating the volume of the hemisphere.

In better responses, students were able to:

- use the value of the radius rather than the diameter
- half the calculated volume of the sphere to find the volume of the hemisphere
- persevere in their calculation and not stop in the middle of the process.

Areas for students to improve include:

- identifying the correct formula from the reference sheet
- showing all correct substitutions
- understanding the term 'hemisphere'.

Question 17

Students should:

- understand the difference between significant figures and decimal places when rounding numbers
- use the correct trigonometric formula appropriate to non-right angled triangles
- show all relevant working.

In better responses, students were able to:

- apply the cosine rule showing detailed processes to find the length of the side x
- interpret the reasonableness of their solution to then find the square root
- round their answer correctly to 2 significant figures.

- rounding values to correct significant figures
- substitute correctly into the correct formula
- checking for reasonableness of their solution from the given diagram.

Question 18

In better responses, students were able to:

- write the ratio using correct notation and original values, in correct order
- simply the ratio fully
- use the ratio to find the total runs scored by the team (b).

Areas for students to improve include:

- writing ratios in the correct order
- understanding that simplified ratios do not involve decimal or fractional values
- differentiating between dividing a quantity in a given ratio to using a ratio for a calculation.

Question 19

Students should:

- address the key words 'justify your answer with calculations'
- know to apply the mathematical concept of an outlier to determine whether the shortest member was an outlier.

In better responses, students were able to:

- correctly find the upper and lower quartiles and calculated the interquartile range
- apply the formula to determine the boundary for an outlier
- draw an accurate conclusion from their calculation.

Areas for students to improve include:

- understanding the difference between range and interquartile range
- acknowledging the outlier condition (from Reference Sheet) and how to apply it
- remembering to draw a conclusion.

Question 20

In better responses, students were able to:

- calculate the correct probability
- multiply a probability by 18 500 to find the expected frequency.

Areas for students to improve include:

- reading the question carefully to understand there are 37 outcomes
- understanding that the number 8 was an outcome and not part of the probability result.

Question 21

In better responses, students were able to:

understand the terms 'dividend' and 'percentage dividend yield'.

Areas for students to improve include:

- remembering the dividend yield formula $\frac{dividend}{value \ of \ shares}$
- calculating the dividend as a percentage.

Question 22

In better responses, students were able to:

- find AC by using either Pythagoras theorem or the cosine rule
- use right-angled trigonometry ($\cos \theta = \frac{A}{H}$) to find θ .

Areas for students to improve include:

- remembering to square root their answer when using Pythagoras' theorem or the cosine rule
- practising with two triangles of different orientations and identifying the correct trig ratio
- avoiding rounding too soon when solving problems with several steps
- understanding that if angles are alternate then the appropriate parallel lines would have been marked on the diagram.

Question 23

Students should:

- practice calculating Pearson's correlation coefficient
- understand the difference between skewness and correlation.

In better responses, students were able to:

- calculate the correct coefficient
- use terminology involving both strength and direction.

Areas for students to improve include:

- accurately substituting the data presented in the graph into their calculator
- only rounding answers that need to be rounded (c).

Question 24

In better responses, students were able to:

 make one of the conversions, such as kilojoules to kilocalories or kilocalories/km to kilojoules/km.

- solving using actual conversions rather than using guess and check as it is not reliable enough
- identifying the difference between kilojoules and kilocalories.

Question 25

In better responses, students were able to:

- determine the probabilities of drawing one and then a second apple in a non-replacement scenario
- draw a useful probability tree and use it to answer the question
- understand the concept of two-stage probability involving non-replacement.

Areas for students to improve include:

- understanding when to add and when to multiply in probability
- practising labelling tree diagrams with consistency
- showing working as a bald answer here was awarded only one mark since this was one of the initial probabilities.

Question 26

Students should:

- understand the difference between the minimum time and the duration of the activities in the non-critical path of a network diagram
- clearly label the activities with the correct EST, EFT and/or duration
- be consistent in labelling their network diagram, either the activities are in the nodes or on the edges
- understand how the float time for an activity is calculated (b).

In better responses, students were able to:

- draw a network diagram connecting the appropriate activities and their corresponding weight from their predecessors
- show by calculation that the float time is the difference between LST and EFT (b).

Areas for students to improve include:

- being consistent in the positioning of their weights and activities in their diagrams either as part of the node or on the edge
- checking they include all activities and their weights in their response
- knowing that the minimum time is the time required to complete all activities not the lowest time on their path.

Question 27

Students should:

- read the guestion carefully as to whether simple or compound interest is required
- be able to recognise when their answer makes sense in relation to the question.

In better responses, students were able to:

convert yearly rates to daily rates

calculate a correct compound interest rate for the time period.

Areas for students to improve include understanding:

- that the number of days for credit card interest being inclusive of the end days (this was stated in the question)
- the term 'minimum payment', then continuing to perform further operations on their answer.

Question 28

Students should:

- practise conversions of time from a decimal to hours and minutes
- be familiar with Year 11 content to understand the use of a variety of formulae and variables (such as in the given BAC formula).

In better responses, students were able to:

- calculate the number of standard drinks
- divide by 0.015 and convert this result to hours and minutes as required.

Areas for students to improve include:

- avoiding rounding too early and giving answers that are truncated
- showing all working steps clearly, so an earlier error can be tracked
- making sure they finish the question by calculating the time asked for in the question.

Question 29

In better responses, students were able to:

- calculate GST
- calculate the value of A + B = \$16.70 or calculate B from an incorrect A.

Areas for students to improve include:

- using the GST given in a question to calculate the cost of the chocolates
- knowing whether the value of A should include the cost of the GST in the receipt.

Question 30

In better responses, students were able to:

- show the minimum spanning tree
- interpret the closed section of the network and give a clear guideline of where they were going
- highlight the minimum spanning tree on the question which was helpful for them to successfully transfer this to the answer box
- use the diagram to cross out path CH to obtain a visual understanding of what was being asked (b).

Areas for students to improve include:

- applying Prim's algorithm correctly to find the minimum spanning tree
- being able to supply some form of spanning tree which is a minimum.

Question 31

Students should:

- understand the difference between 18 cm² and 18²
- review how the model being considered relates to the graph given.

In better responses, students were able to:

- successfully explain that the values below the x-axis and to the left of the y-axis related to a negative width or area, which was not possible
- relate the model to the graph of a parabola
- use guess and check (into $18 = 2w^2 + 5w$) to find the width
- identify (2, 18) on the parabola and established the link between the graph and the model.

Areas for students to improve include:

- using correct mathematical terminology or notation
- writing brief explanations
- identifying what the variables refer to (in this case width and area of a rectangle).

Question 32

In better responses, students were able to:

- find the taxable income by acknowledging that given 2% they needed to find 100% by either dividing the Medicare Levy by 0.02 or using the unitary method
- identify the correct line in the tax table and find the tax payable.

Areas for students to improve include:

- reviewing the terms Medicare Levy and taxable income
- given a percentage of the total amount, being able to find the total amount
- understanding how to use the tax table and when to add and when to multiply.

Question 33

Students should:

- show their working (a) and clearly indicate coordinates on the grid (b)
- read the question to identify what is to be included for their answer
- use a ruler only to complete a line and not for drawing a parabola.

In better responses, students were able to:

- identify they needed to use Speed= Distance Time to solve the question
- plot four points and sketch the correct curve smoothly.

Areas for students to improve include:

- looking for the easiest method to solve the problem
- plotting the minimum number of points required
- understanding that more than one point is needed to sketch a curve.

Question 34

In better responses, students were able to:

- use rise/run correctly to find $\frac{4}{7}$ (a)
- with a non-attempt or incorrect answer for (a), complete the two-step conversion required in (b).

Areas for students to improve include:

- writing a direct variation equation with/without the template provided
- ensuring they read the question to understand that a 'fraction' was required rather than a decimal approximation.

Question 35

Students should:

- be able to identify the correct formula from the reference sheet for an area
- understand a compass radial survey has its directions given as bearings
- use all the information given in the question.

In better responses, students were able to:

- find the angle by rearranging the area of a triangle formula and add to 1250
- round the angle correct to the nearest degree.

Areas for students to improve include:

- understanding that 'Not to Scale' means the angles are not exact in the diagram
- solving the area of a non-right angle triangle to find an unknown value
- interpreting the diagram to find a bearing from calculated values.

Question 36

Students should know how to:

- interpret a graph to find a point of intersection, the gradient and *y*-intercept and how to calculate the relevant equations from this information
- solve linear equations that involve brackets.

In better responses, students were able to:

- correctly find the point of intersection from a graph (a)
- show their method to find gradients from the graph
- clearly identify that Profit = Revenue Cost.

Areas for students to improve include:

- understanding how to find profit from cost and revenue
- reading and using the correct scale from the given graph
- showing their method of finding gradients from graphical methods.

Question 37

In better responses, students were able to:

- determine the depreciation rate using either the declining-balance formula or by first calculating the depreciation between consecutive years
- use a formula rather than the longer year by year depreciation per annum to avoid stopping too soon, at 9 years, or continue past to 11 years.

Areas for students to improve include:

- solving the equation to find the rate after substitution
- calculating the rate using values from a table
- understanding the difference between the V₀ and S values.

Question 38

Students should:

 appreciate that z-score questions usually involve either a formula or a diagram, both of which are given on the Reference Sheet.

In better responses, students were able to:

- present a normal curve or z-score number line and realise that 95% meant 2 standard deviations from the mean
- successfully determine the z-score once they got the standard deviation as 700.

Areas for students to improve include:

- substituting the correct values into a formula including the denominator
- understanding that 95% is not the standard deviation
- interpreting whether a question requires a z-score or a standard deviation.

Question 39

Students should:

- know how to draw an accurate box-plot
- realise that a comparison involves explanations supported by relevant calculations.

In better responses, students were able to:

- calculate a correct comparison of range and/or IQR
- draw a box-plot with correct values for Q₁, Q₂ and Q₃.

Areas for students to improve include:

- understanding that the median is the only measure of central tendency given in a box-plot not the mean
- making comparisons of central tendency, spread and skewness and doing calculations are required, not just stating values with no explanation.

Question 40

Students should:

practise applications of minimum cuts in a range of applications.

In better responses, students were able to:

- realise that the direction of the flow determined if it was included in capacity cuts
- write a realistic recommendation.

Areas for students to improve include:

- drawing the minimum cut (b)
- interpreting the impact of a cut
- understanding the terms 'minimum cut' and 'maximum outflow'.

Question 41

Students should:

understand what is required in a 'show' question.

In better responses, students were able to convert the:

- speed into metres/60 minutes and did a $s = \frac{d}{t}$ calculation, then linked the distance to 5 cm on the diagram
- diagram lengths to actual lengths before attempting to find the area.

- using speed to calculate distance travelled in 10 minutes and relating this back to the diagram given
- using units such as 1 cm = 2 min rather than the distance ie 5 squares so 500 m
- converting 20 mm to 0.02 m for volume calculations or cm to m³ (b)
- using the formula that was asked for in the question.

Question 42

In better responses, students were able to:

interpret and identify the correct value from the table for 6 years.

- understanding the nature of annuities
- realising that the value of the 7th year is based on the value after 6 years not \$2000
- understanding that the wording 'after the contribution' means the last \$2000 is added to get the final amount.