

2023 HSC Mathematics Standard 2 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	В
2	С
3	D
4	Α
5	В
6	С
7	С
8	D
9	D
10	Α
11	С
12	В
13	В
14	С
15	A

Section II

Question 16 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

120 bpm

Question 16 (b)

Criteria	Marks
Provides correct answer	1

Sample answer:

10:30 am

Question 17 (a)

Criteria	Marks
Completes the network diagram	2
Provides a diagram that is substantially correct	1

Sample answer:

Question 17 (b)

Criteria	Marks
Provides correct answer	1

Sample answer:

Kilometres travelled =
$$1040 \text{ km} + 3150 \text{ km}$$

= 4190 km

Question 18

Criteria	Marks
Provides two correct features	2
Provides one correct feature	1

Sample answer:

The histogram is symmetrical. The histogram is unimodal.

Question 19 (a)

Criteria	Marks
Provides correct answer	2
Provides a path from A to D, or equivalent merit	1

Sample answer:

Path ABFGD

Answers could include:

Question 19 (b)

Criteria	Marks
Provides correct answer with a correct reason	2
Provides an explanation or spanning tree, or equivalent merit	1

Sample answer:

It is not a minimum spanning tree as BC is not the shortest path to join C to the tree.

Question 20 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

Maximum height reached = 24 m

Question 20 (b)

Criteria	Marks
Provides correct answers	2
• Calculates $\frac{3}{4}$ of the maximum height, or equivalent merit	1

Sample answer:

$$24 \times \frac{3}{4} = 18 \text{ m}$$

The ball reached 18 m at 1 second and 3 seconds.

Question 21 (a)

Criteria	Marks
Completes the table correctly	1

Sample answer:

Electricity used in a month (kWh)	0	400	1000
Monthly charge (\$)	40	140	290

Question 21 (b)

Criteria	Marks
Graphs Provider A's charges	1

Question 21 (c)

Criteria	Marks
Provides correct answer	1

Sample answer:

They charge the same amount at 400 kWh.

Question 21 (d)

Criteria	Marks
Provides correct solution	2
Demonstrates some progress towards identifying the cheaper option, or equivalent merit	1

Sample answer:

Provider B at 800 kWh charges \$280

Provider A at 800 kWh charges \$240

 \therefore Provider A would be the cheaper option by \$40.

Question 22 (a)

Criteria	Marks
Provides correct solution	2
Correctly substitutes values into the formula, or equivalent merit	1

Sample answer:

Braking distance =
$$k \times (\text{speed})^2$$

$$20 = k \times (50)^2$$

$$k = \frac{20}{(50)^2}$$

$$k = 0.008$$

Question 22 (b)

Criteria	Marks
Provides correct answer	1

Sample answer:

Braking distance =
$$k \times (\text{speed})^2$$

= 0.008×90^2
= 64.8 m

Question 23

Criteria	Marks
Provides correct answer	2
Calculates the probability that Hazel wins the first prize, or equivalent merit	1

$$P(\text{wins both prizes}) = \frac{5}{100} \times \frac{4}{99}$$
$$= \frac{20}{9900}$$
$$= \frac{1}{495}$$

Question 24 (a)

Criteria	Marks
Provides correct solution	2
Attempts to use the trapezoidal rule	1

Sample answer:

$$A = \frac{4.0}{2}(1.9 + 2.7) + \frac{4.0}{2}(2.7 + 1.7)$$
$$= 18 \text{ m}^2$$

Question 24 (b)

Criteria	Marks
Provides correct solution to two significant figures	3
Provides the weight of concrete (unrounded), or equivalent merit	2
Provides the volume of the wall, or equivalent merit	1

$$V = 18 \times 0.8$$
$$= 14.4 \text{ m}^3$$

Tonnes of concrete =
$$14.4 \times 3.52$$
 tonnes
= 50.688 tonnes
= 51 tonnes (2 significant figures)

Question 25 (a)

Criteria	Marks
Provides correct solution	2
Identifies the correct factor from the table	1

Sample answer:

Amount =
$$\frac{$450\,000}{13.181}$$

= \$34 140 (to the nearest dollar)

Question 25 (b)

Criteria	Marks
Provides correct solution	3
Provides the correct interest rate and the correct number of periods, or equivalent merit	2
Multiplies a factor from the table by \$8535, or equivalent merit	1

$$r = \frac{6}{4}\%$$
$$= 1.5\%$$

$$n = 10 \times 4$$
$$= 40$$

Amount =
$$$8535 \times 54.268$$

= $$463 177.38$

Question 26 (a)

Criteria	Marks
Calculates the correct area of the path	2
Attempts to calculate the area of the path, or equivalent merit	1

Sample answer:

Area of path =
$$(3 \text{ m} \times 8 \text{ m}) - (7 \text{ m} \times 2.5 \text{ m})$$

= 6.5 m^2

Question 26 (b)

Criteria	Marks
Calculates the number of bags of cement required	3
Calculates the weight of cement required, or equivalent merit	2
Identifies the proportion of cement in the mixture, or equivalent merit	1

Amount of cement
$$= \frac{1}{7} \times 2.1 \text{ tonnes}$$

 $= 0.3 \text{ tonnes}$
 $= 300 \text{ kg}$
Number of bags $= \frac{300}{15}$
 $= 20 \text{ bags}$

Question 27 (a)

Criteria	Marks
Provides the correct solution	2
Identifies an angle in triangle PXY, or equivalent merit	1

Sample answer:

$$\angle PXY = 180^{\circ} - 120^{\circ}$$
$$= 60^{\circ}$$
$$XP = 15 \text{ km} \times \cos 60^{\circ}$$
$$= 7.5 \text{ km}$$

Question 27 (b)

Criteria	Marks
Provides the correct solution	2
Calculates one of the acute angles in the triangle CXP, or equivalent merit	1

Let
$$\theta = \angle CXP$$

$$\cos\theta = \frac{7.5}{40}$$
$$\theta = 79^{\circ}12'$$

∴ Bearing of
$$C = 180^{\circ} + 79^{\circ}12'$$

= $259^{\circ}12'$
= 259° (to the nearest degree)

Criteria	Marks
Provides the correct solution	3
Correctly calculates the salvage value using the declining-balance method, or equivalent merit	2
Attempts to calculate the salvage value using the declining-balance method, or equivalent merit	1

Sample answer:

Straight-line method:
$$S = V_0 - D_n$$

= \$60 000 - \$3500 × 3
= \$49 500

Declining-balance method:
$$S = V_0 (1 - r)^n$$

= \$60 000 (1 - 12%)³
= \$60 000 (0.88)³
= \$40 888.32

: Declining-balance method would provide a lower salvage value.

Question 29 (a)

Criteria	Marks
Provides correct solution	3
Calculates the monthly repayment, or equivalent merit	2
Identifies the correct factor from the table, or equivalent merit	1

Sample answer:

Amount repaid per month =
$$(\$520\ 000 \div 1000) \times 7.72$$

= $\$4014.40$

Total amount repaid =
$$$4014.40 \times 12 \times 25$$

= $$1 204 320$

Question 29 (b)

Criteria	Marks
Provides correct answer	1

Amount borrowed =
$$(\$3596 \div 8.99) \times 1000$$

= $\$400000$

Criteria	Marks
Provides the correct solution	3
Calculates the difference between the total and the amount on which GST is charged, or equivalent merit	2
Calculates the amount on which GST is charged, or equivalent merit	1

Sample answer:

$$10\% \times n = 3.86$$

 $n = 38.60

Question 31 (a)

Criteria	Marks
Correctly identifies TWO critical paths	2
Identifies a critical path, or equivalent merit	1

Sample answer:

Critical paths are H, I, G, C and H, I, K

Question 31 (b)

Criteria	Marks
Provides correct answer	2
Shortens a task on the critical path by 3 hours, or equivalent merit	1

Sample answer:

Decrease one task by 3 hours.

H and I are common.

H is only 2 hours.

So task *I* should take 4 hours.

Question 32 (a)

Criteria	Marks
Provides correct answer	2
Substitutes some correct values into the compound interest formula, or equivalent merit	1

Sample answer:

Full amount on card =
$$$450 \left(1 + \frac{13.5}{365}\%\right)^{21}$$

= $$453.51$

∴ Interest charged =
$$$453.51 - $450$$

= $$3.51$

Question 32 (b)

Criteria	Marks
Provides correct percentage	2
Attempts to do a percentage calculation, or equivalent merit	1

Percentage =
$$\frac{\$3.51}{\$453.51} \times 100$$

= 0.77%

Criteria	Marks
Provides correct solution	4
Calculates the arc length AND the length of line segment PQ, or equivalent merit	3
 Calculates the arc length OR the length of line segment PQ, or equivalent merit 	2
Attempts to calculate the perimeter of the shape by adding some appropriate portions, or equivalent merit	1

Arc length
$$PQ = \frac{110}{360} \times 2 \times \pi \times 2.1$$

= 4.03171...

Length
$$PQ = \sqrt{2.1^2 + 2.1^2 - 2 \times 2.1 \times 2.1 \times \cos 110^\circ}$$

= 3.4404...

Total perimeter =
$$(3.6 \times 2) + 8.0 + (8.0 - 3.4404) + 4.0317$$

= 23.7913
= 23.8 m

Question 34 (a)

Criteria	Marks
Correctly plots both points on the graph	3
• Calculates \overline{x} and \overline{y} , and plots this point on the grid, or equivalent merit	2
• Calculates \overline{x} or \overline{y} , or equivalent merit	1

$$\bar{x} = \frac{0+0+0+2+5+7+8+9+9+10}{10}$$
= 5

$$\overline{y} = \frac{1840}{10}$$
$$= 184$$

$$\therefore (\overline{x}, \overline{y}) = (5, 184)$$

Question 34 (b)

Criteria	Marks
Provides correct solution	2
Finds the slope of the regression line, or equivalent merit	1

Sample answer:

Slope of regression line =
$$\frac{184 - 236}{5}$$

= -10.4

Gas usage =
$$236 - 10.4 \times \text{temperature}$$

ie
$$y = 236 - 10.4x$$

Question 34 (c)

Criteria	Marks
Identifies one problem with predicting using the regression line	1

Sample answer:

When temperature is 23°C, the regression equation provides a negative answer, which is not physically possible (negative gas usage).

Criteria	Marks
Finds correct solution	3
Uses the sine rule to find a missing side, or equivalent merit	2
Attempts to use the sine rule, or equivalent merit	1

$$\frac{x}{\sin 60^{\circ}} = \frac{12}{\sin 25^{\circ}}$$
$$x = \frac{12 \times \sin 60^{\circ}}{\sin 25^{\circ}}$$
$$x = 24.59$$

Area =
$$\frac{1}{2}ab\sin C$$

= $\frac{1}{2} \times 12 \times 24.59 \times \sin 95^{\circ}$
= 146.98 m^2
= 147 m^2 (to nearest m²)

Criteria	Marks
Provides correct solution	4
Finds the correct value of H	3
Attempts to solve for H	2
Substitutes values into the BAC formula, or equivalent merit	1

Sample answer:

$$BAC_{\text{male}} = \frac{10N - 7.5H}{6.8M}$$

$$0.02 = \frac{(10 \times 3) - (7.5 \times H)}{(6.8 \times 75)}$$

$$10.2 = 30 - (7.5 \times H)$$

$$H = \frac{30 - 10.2}{7.5}$$

$$H = 2.64 \text{ hours}$$

$$H = 2 \text{ h 38 min}$$

9:00 pm - 2 h 38 min = 6:22 pm

: Cameron began drinking at 6:22 pm.

Criteria	Marks
Provides correct solution	3
Finds the amount to which X cents applies, or equivalent merit	2
Calculates 25.8% of 90 000, or equivalent merit	1

$$$90\ 000 \times 25.8\% = $23\ 220$$

$$$11\ 200 \times \overline{X} = $4928$$

$$\overline{X} = \frac{$4928}{$11\ 200}$$

$$\overline{X} = $0.44$$

$$\therefore X = 44 \text{ cents}$$

Criteria	Marks
Provides correct solution	4
Finds the correct proportion of the group of koalas, or equivalent merit	3
Finds the correct probability from the table, or equivalent merit	2
Calculates the correct z value, or equivalent merit	1

Sample answer:

$$z = \frac{x - \mu}{\sigma}$$

$$= \frac{11.93 - 10.40}{1.15}$$

$$= 1.33 \qquad (2 \text{ decimal places})$$

 \therefore Probability from table = 0.9082

$$P(\text{more than } 11.93) = 1 - 0.9082$$

= 0.0918

Number of koalas =
$$0.0918 \times 400$$

= 36.72
= 36 (accept 37 as well)

2023 HSC Mathematics Standard 2 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	MS-F1 Money Matters	MS11-5
2	1	MS-S5 The Normal Distribution	MS2-12-7
3	1	MS-S4 Bivariate Data Analysis	MS2-12-2
4	1	MS-F1 Money Matters	MS11-10
5	1	MS-M7 Rates and Ratios	MS2-12-10
6	1	MS-F1 Money Matters	MS11-10
7	1	MS-M2 Working with Time	MS11-4
8	1	MS-S2 Relative Frequency and Probability	MS11-8
9	1	MS-M1 Applications of Measurement	MS11-3
10	1	MS-F4 Investments and Loans	MS2-12-5
11	1	MS-M7 Rates and Ratios	MS2-12-3
12	1	MS-M1 Applications of Measurement	MS11-3
13	1	MS-F1 Money Matters	MS11-5
14	1	MS-N3 Critical Path Analysis	MS2-12-10
15	1	MS-S1 Data Analysis	MS11-7

Section II

Question	Marks	Content	Syllabus outcomes
16 (a)	1	MS-M7 Rates and Ratios	MS2-12-3
16 (b)	1	MS-M7 Rates and Ratios	MS2-12-3
17 (a)	2	MS-N2 Network Concepts	MS2-12-8
17 (b)	1	MS-N2 Network Concepts	MS2-12-8
18	2	MS-S5 The Normal Distribution	MS2-12-10
19 (a)	2	MS-N2 Network Concepts	MS2-12-8
19 (b)	2	MS-N2 Network Concepts	MS2-12-8
20 (a)	1	MS-A4 Types of Relationships	MS2-12-6
20 (b)	2	MS-A4 Types of Relationships	MS2-12-6
21 (a)	1	MS-A4 Types of Relationships	MS2-12-6
21 (b)	1	MS-A4 Types of Relationships	MS2-12-6
21 (c)	1	MS-A4 Types of Relationships	MS2-12-6
21 (d)	2	MS-A4 Types of Relationships	MS2-12-10
22 (a)	2	MS-A4 Linear Relationships	MS2-12-6
22 (b)	1	MS-A4 Linear Relationships	MS2-12-6
23	2	MS-S2 Relative Frequency and Probability	MS11-8
24 (a)	2	MS-M1 Applications of Measurement	MS11-4
24 (b)	3	MS-M1 Applications of Measurement	MS11-3

Question	Marks	Content	Syllabus outcomes
25 (a)	2	MS-F5 Annuities	MS2-12-5
25 (b)	3	MS-F5 Annuities	MS2-12-5
26 (a)	2	MS-M1 Applications of Measurement	MS11-4
26 (b)	3	MS-M7 Rates and Ratios	MS2-12-10
27 (a)	2	MS-M6 Non-right-angled Trigonometry	MS2-12-4
27 (b)	2	MS-M6 Non-right-angled Trigonometry	MS2-12-4
28	3	MS-F4 Investments and Loans	MS2-12-10
29 (a)	3	MS-F4 Investments and Loans	MS2-12-5
29 (b)	1	MS-F4 Investments and Loans	MS2-12-5
30	3	MS-F1 Money Matters	MS11-5
31 (a)	2	MS-N3 Critical Path Analysis	MS2-12-10
31 (b)	2	MS-N3 Critical Path Analysis	MS2-12-10
32 (a)	2	MS-F4 Investments and Loans	MS2-12-5
32 (b)	2	MS-F4 Investments and Loans	MS2-12-9
33	4	MS-M1 Applications of Measurement MS-M6 Non-right-angled Trigonometry	MS2-12-4
34 (a)	3	MS-S4 Bivariate Data Analysis	MS2-12-2
34 (b)	2	MS-S4 Bivariate Data Analysis	MS2-12-2
34 (c)	1	MS-S4 Bivariate Data Analysis	MS2-12-10
35	3	MS-M6 Non-right-angled Trigonometry	MS2-12-4
36	4	MS-A1 Formulae and Equations	MS11-6
37	3	MS-F1 Money Matters	MS11-6
38	4	MS-S5 The Normal Distribution	MS2-12-7