

2024 HSC Mathematics Standard 1 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	С
2	В
3	A
4	D
5	С
6	В
7	A
8	D
9	D
10	A

Section II

Question 11

Criteria	Marks
Provides correct answer with correct units	2
Makes appropriate use of scale, or equivalent merit	1

Sample answer:

Scale 1:50 $8 \text{ cm} \Rightarrow 8 \times 50 \text{ cm}$ = 400 cmHeight in metres $= 400 \div 100$

=4 m

Question 12

Criteria	Marks
Provides correct answer	2
Provides correct strength or direction, or equivalent merit	1

Sample answer:

Strong and negative

Question 13 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

Lower quartile = 1

Upper quartile = 7

$$IQR = 7 - 1$$

= 6

Question 13 (b)

Criteria	Marks
Provides correct solution	2
Makes appropriate use of IQR, or equivalent merit	1

Sample answer:

$$Q_3 + 1.5 \times IQR$$

$$= 7 + 1.5 \times 6$$

= 16

16 > 15, so 15 is not an outlier.

Question 14 (a)

Criteria	Marks
Provides correct solution	2
Attempts to use Pythagoras' theorem, or equivalent merit	1

Sample answer:

Question 14 (b)

Criteria	Marks
Provides correct answer (either true or compass bearing)	2
Attempts to use a trigonometric ratio to find an angle, or equivalent merit	1

Question 15 (a)

Criteria	Marks
Provides the correct path	2
Provides a continuous path from T to H	1

Sample answer:

TYWH

Question 15 (b)

Criteria	Marks
Provides correct solution	2
Provides a continuous path from Y to G, without C to G	1

Sample answer:

YWHMG is 89 km

Question 16

Criteria	Marks
Provides correct answer	2
Performs an appropriate conversion, or equivalent merit	1

Sample answer:

$$\frac{650}{1000} \times 6 \times \$0.3013$$

= \$1.18

Question 17 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

8, 10, 12, 14, 16, 18

Question 17 (b)

Criteria	Marks
Provides correct solution	2
Provides correct sample space, or equivalent merit	1

Sample answer:

$$P(\text{not even and} > 7) = \frac{14}{20}$$
$$= \frac{7}{10}$$

Alternative:

$$P(\text{even and} > 7) = \frac{6}{20}$$
$$= \frac{3}{10}$$

$$P(NOT) = 1 - \frac{3}{10}$$
$$= \frac{7}{10}$$

Criteria	Marks
Provides correct solution	3
Calculates area of semicircle or triangle, or equivalent merit	2
Finds base of triangle, or equivalent merit	1

Sample answer:

$$A_{\text{(triangle)}} = \frac{1}{2} \times 7 \times 6$$
$$= 21$$

$$A_{\text{(half circle)}} = \frac{1}{2} \times \pi \times 3^2$$
$$= 14.137...$$

$$A_{\text{(total)}} = 35.137...$$

= 35 m²

Question 19

Criteria	Marks
Provides correct solution	2
Correct substitution, or equivalent merit	1

$$L = 7.3a + 38$$

$$156 = 7.3a + 38$$

$$156 - 38 = 7.3a$$

$$a = \frac{118}{7.3}$$

$$= 16.164...$$

$$= 16 \text{ years}$$

Question 20 (a)

Criteria	Marks
Provides correct solution	2
Draws a spanning tree, or equivalent merit	1

Sample answer:

Weight = 24

Question 20 (b)

Criteria	Marks
Provides a correct reason for why it is possible to find another spanning tree with the same weight	1

Sample answer:

Yes, use BC instead of FC as the weight of BC is the same as the weight of FC.

Criteria	Marks
Provides correct solution	2
Uses the simple interest formula with 1 correct substitution, or equivalent merit	1

Sample answer:

$$I = PRN$$

$$= 1500 \times \frac{6}{100} \times \frac{3}{12}$$

$$= $22.50$$

Question 22

Criteria	Marks
Provides correct solution	2
Calculates time difference from table, or equivalent merit	1

Sample answer:

Time difference from timetable = 1 hour 37 minutes

Town B is 1 hour behind Town A.

1 hour 37 minutes + 1 hour = 2 hours 37 minutes

Question 23 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

Number of people	0	25	50	75	100	125	150
Cost	2500	3750	5000	6250	7500	8750	10 000

Question 23 (b)

Criteria	Marks
Provides correct solution	2
Plots one point from the table, or equivalent merit	1

Question 23 (c)

Criteria	Marks
Provides correct answer	1

Sample answer:

125 tickets

Question 23 (d)

Criteria	Marks
Provides correct solution	3
Calculates correct cost and revenue, or equivalent merit	2
Calculates correct revenue, or equivalent merit	1

Sample answer:

Revenue = 300 tickets
$$\times$$
 \$70 = \$21 000
Cost = 2500 + 300 \times \$50 = \$17 500
Profit = 21 000 - 17 500
= \$3500

Question 24

Criteria	Marks
Compares skewness, median and spread correctly	3
Compares spread and medians of two graphs, or equivalent merit	2
Compares spread of two graphs, or equivalent merit	1

Sample answer:

- Class A negatively skewed, Class B positively skewed.
- *IQR* for *A* and *B* is equal.
- Class A median is 4, Class B median is 3.

Answer could include:

• Range for *A* and *B* is equal.

Criteria	Marks
Provides correct solution	2
Attempts to use trigonometry with an angle of 4°, or equivalent merit	1

Sample answer:

$$\sin 4^{\circ} = \frac{35}{\text{path}}$$

$$Path = \frac{35}{\sin 4^{\circ}}$$

$$= 501.74...$$

$$= 502 \text{ m}$$

Question 26

Criteria	Marks
Provides correct solution	3
Uses the compound interest formula correctly, or equivalent merit	2
Attempts to use the compound interest formula, or equivalent merit	1

$$A = P(1+r)^{n}$$

$$= 600(1+0.07\%)^{30}$$

$$= 612.728...$$

$$A = $612.73$$
Interest = \$612.73 - \$600
$$= $12.73$$

Criteria	Marks
Provides correct solution	3
Finds Zazu's normal time earnings and overtime hourly rate, or equivalent merit	2
Finds Zazu's normal time earnings, or equivalent merit	1

Sample answer:

Normal time earnings =
$$38 \times 45$$

= 1710
Overtime paid = $2790 - 1710$
= 1080
Overtime hours = $\frac{$1080}{(45 \times 1.5)}$
= 16 hours

Therefore 16 hours overtime.

Question 28

Criteria	Marks
Provides correct solution	3
Calculates Jun's interest, or equivalent merit	2
Calculates Alex's interest, or equivalent merit	1

Sample answer:

Alex's interest after 5 years =
$$1800 \times 7.5\% \times 5$$

= $$675$

Jun's investment at 5 years =
$$1800 \times \left(1 + \frac{6}{4}\%\right)^{4 \times 5}$$

= $2424.339...$

Interest =
$$2424.34 - 1800$$

= $$624.34$

:. Alex earns more interest.

Question 29 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

 $4000 \text{ mm} \times 500 \text{ mm}$

$$= 4 \text{ m} \times 0.5 \text{ m}$$

Question 29 (b)

Criteria	Marks
Provides correct solution	4
Calculates required number of tiles, or equivalent merit	3
Provides total floor area to be covered, or equivalent merit	2
Provides 1 correct area, or equivalent merit	1

Sample answer:

Section ①

$$<$$
 30 across $\sqrt{5 \text{ down}}$ = 150 tiles

Section 2

$$\begin{array}{ll}
\leftarrow & 10 \text{ across} \\
\downarrow 1 \text{ down} & = 10 \text{ tiles}
\end{array}$$

Total = 160 tiles needed

= \$1100

$$160 \div 15 = 10.67 \text{ boxes}$$

= 11 boxes (rounded to nearest full box)
 $Cost = 11 \times 100$

Alternative:

$$A_1 = 6 \times 2.5 \text{ m}$$
$$= 15 \text{ m}^2$$

$$A_2 = 2 \times 0.5 \text{ m}$$
$$= 1 \text{ m}^2$$

$$A_{\text{total}} = 16 \text{ m}^2$$

$$A_{\text{tile}} = 0.2 \times 0.5$$
$$= 0.1 \,\text{m}^2$$

Total tiles needed = $16 \text{ m}^2 \div 0.1 \text{ m}^2$ = 160 tiles

$$160 \div 15 = 10.67 \text{ boxes}$$

= 11 boxes (rounded to nearest full box)

$$Cost = 11 \times 100$$
$$= \$1100$$

Criteria	Marks
Provides correct solution	4
- Uses the declining-balance method with correct values for r,n and $V_0,$ or equivalent merit	3
Attempts to use the declining-balance method with an initial value from the straight-line method, or equivalent merit	2
Attempts to use straight-line method, or equivalent merit	1

Sample answer:

Value after 4 years:

Using straight-line method =
$$50\ 000 - 1500 \times 4$$

= $44\ 000$

Value after the next 6 years:

Using declining-balance method =
$$44\ 000(1-35\%)^6$$

= $3318.43...$

Total depreciation =
$$50\ 000 - 3318.43$$

= \$46\ 681.57

Question 31

Criteria	Marks
Provides correct solution	3
Provides correct calculations in hours, or equivalent merit	2
Provides correct distance conversion, or equivalent merit	1

Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

 $40 \text{ km/h} = \frac{0.15 \text{ km}}{T}$
 $T = \frac{0.15}{40}$
 $T = 0.00375 \text{ hours}$
 $T = 0.00375 \times 3600 \text{ seconds}$
= 13.5 seconds

Question 32 (a)

Criteria	Marks
Provides correct solution	3
Finds distance travelled, or equivalent merit	2
• Attempts to use $S = \frac{D}{T}$, or equivalent merit	1

Sample answer:

$$S = \frac{D}{T}$$

$$3 = \frac{D}{24 \div 60}$$

$$D = 3 \times \frac{24}{60}$$

$$= 1.2 \text{ km}$$

6 cm: 1.2 km

1 cm : 0.2 km

$$0.2 \,\mathrm{km} = 200 \;\mathrm{m} = 20 \;000 \;\mathrm{cm}$$

1:20 000

Question 32 (b)

Criteria	Marks
Provides correct answer	2
Attempts to use scale from part (a), or equivalent merit	1

Sample answer:

 $1:20\ 000$

 $7 \text{ cm} : 7 \times 20\ 000$

 $= 140\ 000\ cm$

= 1400 m

= 1.4 km

2024 HSC Mathematics Standard 1 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	MS-S2 Relative Frequency and Probability	MS11-8
2	1	MS-M4 Rates	MS1-12-3
3	1	MS-M4 Rates	MS1-12-10
4	1	MS-F1 Money Matters	MS11-5
5	1	MS-F1 Money Matters	MS11-5
6	1	MS-N1 Networks and Paths	MS1-12-8
7	1	MS-M3 Right-angled Triangles	MS1-12-4
8	1	MS-F2 Investment	MS1-12-5
9	1	MS-M1 Applications of Measurement	MS11-4
10	1	MS-A3 Types of Relationships	MS1-12-6

Section II

Question	Marks	Content	Syllabus outcomes
11	2	MS-M5 Scale Drawings	MS1-12-4
12	2	MS-S3 Further Statistical Analysis	MS1-12-2
13 (a)	1	MS-S1 Data Analysis	MS11-7
13 (b)	2	MS-S1 Data Analysis	MS11-10
14 (a)	2	MS-M3 Right-angled Triangles	MS1-12-4
14 (b)	2	MS-M3 Right-angled Triangles	MS1-12-4
15 (a)	2	MS-N1 Networks and Paths	MS1-12-8
15 (b)	2	MS-N1 Networks and Paths	MS1-12-10
16	2	MS-M1 Applications of Measurement MS-M4 Rates	MS1-12-3
17 (a)	1	MS-S2 Relative Frequency and Probability	MS11-7
17 (b)	2	MS-S2 Relative Frequency and Probability	MS11-10
18	3	MS-M1 Applications of Measurement	MS11-4
19	2	MS-A1 Formulae and Equations	MS11-10
20 (a)	2	MS-N1 Networks and Paths	MS1-12-8
20 (b)	1	MS-N1 Networks and Paths	MS1-12-10
21	2	MS-F1 Money Matters	MS11-6
22	2	MS-M2 Working with Time	MS11-10
23 (a)	1	MS-A3 Types of Relationships	MS1-12-9
23 (b)	2	MS-A3 Types of Relationships	MS1-12-6
23 (c)	1	MS-A3 Types of Relationships	MS1-12-10
23 (d)	3	MS-A3 Types of Relationships	MS1-12-1
24	3	MS-S1 Data Analysis	MS11-10
25	2	MS-M3 Right-angled Triangles	MS1-12-4

Question	Marks	Content	Syllabus outcomes
26	3	MS-F3 Depreciation and Loans	MS1-12-5
27	3	MS-F1 Money Matters	MS11-6
28	3	MS-F2 Investment	MS1-12-10
29 (a)	1	MS-M5 Scale Drawings	MS1-12-3
29 (b)	4	MS-M5 Scale Drawings	MS1-12-10
30	4	MS-F1 Money Matters MS-F3 Depreciation and Loans	MS1-12-10
31	3	MS-M4 Rates	MS1-12-3
32 (a)	3	MS-M5 Scale Drawings	MS1-12-3
32 (b)	2	MS-M5 Scale Drawings	MS1-12-4