

Mathematics Standard 1

HSC marking feedback 2024

General feedback

Students should:

- show relevant mathematical reasoning and/or calculations
- read the question carefully to ensure that they do not miss important components of the question
- have a clear understanding of key words in the question and recognise the intent of the question and its requirements, such as show, solve, evaluate, hence, calculate
- use the Reference Sheet where appropriate
- ensure the solution is legible and follows a clear sequence
- engage with any stimulus material provided and refer to it in their response when required by the question
- check their solution answers the question
- round off numerical solutions only at the final step of the solution
- construct graphs neatly, with precision and display all relevant information as required by the question
- interpret information presented in graphs across a range of contexts
- understand when to use relevant calculator functions
- carefully note any information in the questions which supplies units of measurement.

Section II

Question 11

In better responses, students were able to:

- recognise 1:50 means that there is 1 unit for every 50 units in real life
- correct multiplication (8 x 50)
- correctly convert cm to m
- recognise how to use a ratio
- make appropriate use of the scale to calculate the actual height of the tree, in metres.

Areas for students to improve include:

- understanding how scale works to calculate the actual height of the tree, in metres
- identifying the 8 cm related to the 1 in the scale
- knowing what units to convert to when using a scale
- understanding that scale is in the same units for the 1 and 50.

Question 12

In better responses, students were able to:

- use two words to describe the bivariate dataset in terms of strength and direction strong and negative
- identify scatter plot points from left to right in a negative direction
- interpret a strong correlation by the closeness of the points in forming a straight line.

Areas for students to improve include:

• using the word negative rather than decreasing or declining or going down to describe the bivariate dataset in terms of strength and direction.

Question 13

In better responses, students were able to:

- use the interquartile range (IQR) and outlier formula correctly and make an appropriate comparison
- clearly label or identify the lower quartile (Q1) and the upper quartile (Q3).

- knowing the difference between median and mean
- comparing their answer for what constitutes an outlier to their calculation.

In better responses, students were able to:

- link the right-angled triangle with Pythagoras' Theorem (a)
- use trigonometric ratios (tan) to calculate an angle and use this angle to calculate the hypotenuse
- draw a compass at the train station and then draw in the bearing to be calculated (b)
- write the bearing as a compass bearing.

Areas for students to improve include:

- using right-angled triangles with Pythagoras' Theorem, especially when two lengths are given
- reading the question carefully and drawing a compass from the train station
- using trigonometric ratios with calculating angles in right-angled triangles when given lengths.

Question 15

In better responses, students were able to:

- identify the correct path and its weight
- correctly label a path using letters
- understand the difference between identifying a path and calculating its length
- find the 2 paths and then clearly showed the vertices which related to the shortest path.

Areas for students to improve include:

- following the path they are trying to state and ensuring vertices are not missed
- including the start and end points when labelling a path
- understanding that diagrams are not to scale and a shorter path may appear longer on the network diagram.

Question 16

In better responses, students were able to:

- · correctly convert both the electricity usage and cents to dollars
- round to 2 decimal places.

- knowing the correct conversion, for example 1 kW = 1000 W
- converting cents to dollars
- understanding that this question involves two conversions.

In better responses, students were able to:

- recognise even numbers greater than a given value
- identify there are 20 numbers between 0 and 19, inclusive
- use the complementary event to solve the question.

Areas for students to improve include:

- identifying odd and even numbers
- understanding what the term 'not' means in probability
- understanding how to calculate complementary events.

Question 18

In better responses, students were able to:

- correctly apply the formula for the area of a semicircle
- correctly apply the formula for the area of a triangle
- correctly adds areas for composite shapes.

Areas for students to improve include:

- understanding which sides of a triangle are important when finding area
- calculating the area of the composite shapes separately
- understanding the difference between perimeter, circumference and area.

Question 19

In better responses, students were able to:

- · substitute into the given formula
- show the opposite operation for each step when solving a 2-step equation.

- solving 2 step equations
- solving and showing the opposite operations for each step.

In better responses, students were able to:

- draw the correct minimum spanning tree (using a ruler) with weighted edges in their diagram
- calculate the correct weight of their spanning tree
- identify either FC and BC in the correct minimum spanning tree as having the same weight.

Areas for students to improve include:

- · writing down the weighted edges, for example, weights on each edge of their tree
- identify two edges with the same weight that could be swapped.

Question 21

In better responses, students were able to:

- elect and use the correct formula with all correct values for P, r and n.
- interpret that the period needed to be a fraction over 12.

Areas for students to improve include:

- identifying when simple interest or compound interest is required
- being able to convert periods into the correct time frame.

Question 22

In better responses, students were able to:

- calculate the time difference between Towns A and B
- calculate the length of the flight taking into consideration time differences
- · use time diagrams to set out their work.

- converting 24-hour time to 12-hour time
- understanding when to add or subtract time differences
- using the degrees, minutes and seconds button on a calculator to calculate time difference.

In better responses, students were able to:

- use a table of values to plot points and draw a straight line with a ruler
- identify the difference between cost and revenue and break-even
- work out the revenue, the cost and show a subtraction of these values to find the profit made.

Areas for students to improve include:

- using a ruler to draw a straight-line graph
- reading a graph for a point of intersection
- knowing break-even point is the point of intersection.

Question 24

In better responses, students were able to:

- recognise that the Class A scores were negatively skewed and the scores from Class B were positively skewed
- compare skewness, median and spread (range or IQR) correctly in Class A and Class B
- display their answers in a table.

Areas for students to improve include:

- having a better understanding of the key terms used in data, especially skewness
- identifying what is required for skewness, measures of location and spread.

Question 25

In better responses, students were able to:

- identify the correct trigonometric ratio
- apply the ratio correctly to find the denominator.

- recognising which trigonometric ratio to use
- labelling the sides of the triangle based on the position of an angle.

In better responses, students were able to:

 recognise that the question requires the student to find the future value using the compound interest formula and then subtracting the original \$600 from the solution to calculate the interest charged.

Areas for students to improve include:

- understanding the difference between simple and compound interest
- subtracting \$600 to correctly calculate interest.

Question 27

In better responses, students were able to:

- calculate the time-and-a-half rate of \$67.50
- understand that overtime hours are different to equivalent normal hours
- calculate the amount paid for overtime
- total earnings for the week.

Areas for students to improve include:

• understanding the difference between overtime rates and normal hourly rates.

Question 28

In better responses, students were able to:

- know the difference between simple interest and compound interest
- compare Alex and Jun's future values or compare their interest values from the simple interest and compound interest calculations
- write a concluding statement
- recognise that they were calculating different values for each person and then make the appropriate adjustment.

- converting the rate and periods into the compounding periods stated in the question, particularly for interest compounding quarterly
- understanding that interest or future values should be compared to see the difference in interest earnt for questions with two different interest type questions
- identifying the compound interest formula gives the future value, not the interest
- identifying the simple interest formula gives the interest not the future value.

In better responses, students were able to:

- convert between millimetres and metres rather than between units of area
- find the area of the composite shape in square metres using either subtraction or addition
- find the number of boxes by dividing area by 15 and then rounding this number before multiplying by 100 to find the total cost.

Areas for students to improve include:

- converting between units of length before calculating area
- identifying simple shapes and calculate their areas
- breaking down questions into smaller manageable steps.

Question 30

In better responses, students were able to:

- calculate the salvage value for the straight-line depreciation component
- substitute the salvage value from the straight-line method at the end of the 4 years into the declining-balance formula as the initial value
- subtract the final salvage value from the original value to calculate the total depreciation.

Areas for students to improve include:

- knowing the difference between straight line and declining balance depreciation
- selecting the correct formula from the reference sheet and using it correctly
- understanding the salvage value at the end of the 4 years is the initial value of the next part
 of the calculation
- understanding that 'depreciation' is the loss in value.

Question 31

In better responses, students were able to:

- convert between different units
- recognise that units need to be the same to calculate time
- apply the unitary method with correct conversions.

- understanding the relationship between speed, distance and time and knowing the formula correctly
- making sure that the units for distance, speed and time are connected, for example, distance in *km*, speed in *km/h* and time in *h*, or distance in *m*, speed in *m/s* and time in *s*.

In better responses, students were able to:

- apply the speed, distance, time formula to calculate the correct distance
- correctly convert between units
- write a scale in the form 1:a
- apply their scale to find the real distance of another side.

- correctly using the speed, distance, time formula converting from km to m to cm
- converting from minutes to hours
- knowing a scale must be in the same units.