

2024 HSC Mathematics Standard 2 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	С
3	A
4	В
5	A
6	A
7	D
8	С
9	В
10	D
11	В
12	С
13	А
14	В
15	D

Section II

Question 16 (a)

Criteria	Marks
Provides the correct path	2
Provides a continuous path from T to H	1

Sample answer:

TYWH

Question 16 (b)

Criteria	Marks
Provides correct solution	2
 Provides a continuous path from Y to G, without C to G 	1

Sample answer:

YWHMG is 89 km

Question 17

Criteria	Marks
Provides correct answer	2
Performs an appropriate conversion, or equivalent merit	1

$$\frac{650}{1000} \times 6 \times \$0.3013$$
$$= \$1.18$$

Question 18 (a)

Criteria	Marks
Provides correct solution	2
Draws a spanning tree, or equivalent merit	1

Sample answer:

Weight = 24

Question 18 (b)

Criteria	Marks
Provides a correct reason for why it is possible to find another spanning tree with the same weight	1

Sample answer:

Yes, use BC instead of FC as the weight of BC is the same as the weight of FC.

Question 19 (a)

Criteria	Marks
Provides correct solution	2
Finds the <i>y</i> -intercept or gradient, or equivalent merit	1

Sample answer:

$$m = \frac{14}{10}$$
$$= 1.4$$

$$y = 1.4x + 6$$

Question 19 (b)

Criteria	Marks
Provides correct reason	1

Sample answer:

Worse as the predicted test mark was 13 instead of 12.

Question 20 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

 $$200 \times 10.0266$ = \$2005.32

Question 20 (b)

Criteria	Marks
Provides correct solution	2
Finds the correct rate, or equivalent merit	1

$$r = \frac{4}{2}\%$$

$$= 2\%$$

$$n = 3 \times 2$$

$$= 6$$

Investment per 6 months =
$$\frac{4500}{6.4343}$$

= 699.37...
= \$700 rounded to nearest \$10

Question 21 (a)

Criteria	Marks
Provides correct solution	2
Provides one correct entry in the table	1

Sample answer:

	А	В	С	D	E
1	Month	Principal	Interest charged	Amount repaid	Balance owing
2	1	\$5590.00	\$111.80	\$110.00	\$5591.80
3	2	\$5591.80	\$111.84	\$110.00	\$5593.64

 \therefore Balance owing = \$5593.64

Question 21 (b)

Criteria	Marks
Provides a correct reason	1

Sample answer:

Loan will never be repaid as the interest charged per month is more than the monthly repayment of \$110.

Answers could include:

The balance owing on the loan is increasing.

Criteria	Marks
Completes the table correctly	3
Provides two correct entries	2
Provides one correct entry	1

Sample answer:

	Population W	Population K
Population in 1985	A = 34	B = 280
Percentage yearly change in the population	5.5%	-3%
Population when $x = 50$	494 A	61
	$34(1.055)^{50}$ $= 494.426$	
	= 494	

Question 23

Criteria	Marks
Provides correct solution	3
Finds Zazu's normal time earnings and overtime hourly rate, or equivalent merit	2
Finds Zazu's normal time earnings, or equivalent merit	1

Sample answer:

Normal time earnings =
$$38 \times 45$$

= 1710
Overtime paid = $2790 - 1710$
= 1080
Overtime hours = $\frac{$1080}{(45 \times 1.5)}$
= 16 hours

Therefore 16 hours overtime.

Question 24 (a)

Criteria	Marks
Provides correct answer	2
Attempts to use the BAC formula	1

Sample answer:

$$BAC = \frac{10(1.2 \times 3) - 7.5 \times 2.5}{5.5 \times 60}$$

= 0.0522...
= 0.052 (to 3 decimal places)

Question 24 (b)

Criteria	Marks
Provides correct answer in hours and minutes	2
Correct substitution of previous answer, or equivalent merit	1

$$Time = \frac{0.052}{0.015}$$
$$= 3 \text{ hours } 28 \text{ minutes}$$

Criteria	Marks
Provides correct solution	3
Calculates Jun's interest, or equivalent merit	2
Calculates Alex's interest, or equivalent merit	1

Sample answer:

Alex's interest after 5 years =
$$1800 \times 7.5\% \times 5$$

= $$675$

Jun's investment at 5 years =
$$1800 \times \left(1 + \frac{6}{4}\%\right)^{4 \times 5}$$

= $2424.339...$

Interest =
$$2424.34 - 1800$$

= $$624.34$

:. Alex earns more interest.

Question 26

Criteria	Marks
Provides correct solution	3
Finds correct maximum area, or equivalent merit	2
Finds the width corresponding to maximum area, or equivalent merit	1

Sample answer:

$$A = -0.5w^2 + 20w$$

Maximum area when width = 20

$$A = -0.5(20)^2 + 20(20)$$
$$= 200 \text{ cm}^2$$

$$A = h \times w$$

$$200 = h \times 20$$

$$h = 10$$

 \therefore width = 20 cm, height = 10 cm

Criteria	Marks
Provides correct answer	3
Finds two of the repayments required, or equivalent merit	2
Finds a relevant repayment amount, or equivalent merit	1

Sample answer:

Repayments for 5 years at
$$280 = 280 \times 12 \times 5$$

= 16 800

Repayments for 7 years at 250 = 21000

Total repayment =
$$16\ 800 + 21\ 000$$

= $37\ 800$

Repayment for 10 years at 280 = 33600

$$\therefore \text{ Difference} = \$37\ 800 - \$33\ 600$$
$$= \$4200$$

Question 28

Criteria	Marks
Compares the two datasets on skewness, central tendency and spread	3
Compares two of the measures of centre and spread and skewness for the two gardens, or equivalent merit	2
Compares skewness, measures of centre or spread for the two gardens, or equivalent merit	1

Sample answer:

The dataset for Garden A is negatively skewed while the dataset for Garden B is positively skewed.

The median for Garden A is higher than the median for Garden B.

The *IQR* of Garden A is larger than the *IQR* of Garden B.

Answers could include:

The range of Garden A is larger than the range of Garden B.

Criteria	Marks
Provides correct solution	4
- Uses the declining-balance method with correct values for r,n and $V_0,$ or equivalent merit	3
Attempts to use the declining-balance method with an initial value from the straight-line method, or equivalent merit	2
Attempts to use straight-line method, or equivalent merit	1

Sample answer:

Value after 4 years:

Using straight-line method =
$$50\ 000 - 1500 \times 4$$

= $44\ 000$

Value after the next 6 years:

Using declining-balance method =
$$44\ 000(1-35\%)^6$$

= $3318.43...$

Total depreciation =
$$50\ 000 - 3318.43$$

= \$46\ 681.57

Question 30

Criteria	Marks
Provides three correct observations	3
Provides two correct observations	2
Provides one correct observation	1

- Female anacondas grow at a faster rate than males.
- Both females and males continue to grow after 4 years.
- Females are longer than males.

Question 31 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

 $\frac{2}{3}$

Question 31 (b)

Criteria	Marks
Provides correct solution	2
Finds probability of no heads, or equivalent merit	1

$$P(\text{no heads}) = \frac{1}{3} \times \frac{1}{3}$$
$$= \frac{1}{9}$$

$$\therefore P(\text{at least 1 head}) = 1 - \frac{1}{9}$$
$$= \frac{8}{9}$$

Criteria	Marks
Provides correct solution to 2 significant figures	4
Finds the shaded area, or equivalent merit	3
Finds the area of both the circle and a triangle, or equivalent merit	2
Finds the area of the circle or a triangle, or equivalent merit	1

$$A_{\text{circle}} = \pi r^2$$
$$= \pi \times 30^2$$
$$= 2827.433...$$

$$A_{\triangle} = \frac{1}{2}ab \sin C$$
$$= \frac{1}{2} \times 30 \times 30 \sin 72^{\circ}$$
$$= 427.975...$$

$$A_{\text{pentagon}} = 5 \times 427.975...$$

= 2139.877...

Shaded area =
$$2827.433 - 2139.877$$

= $687.5...$
= 690 cm^2 (2 significant figures)

Criteria	Marks
Provides correct solution	3
Provides correct calculations in hours, or equivalent merit	2
Provides correct distance conversion, or equivalent merit	1

Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

 $40 \text{ km/h} = \frac{0.15 \text{ km}}{T}$
 $T = \frac{0.15}{40}$
 $T = 0.00375 \text{ hours}$
 $T = 0.00375 \times 3600 \text{ seconds}$
= 13.5 seconds

Criteria	Marks
Provides correct solution in square metres	4
Finds the total surface area, or equivalent merit	3
Finds the surface area of the cylinder or sphere	2
Attempts to find surface area of sphere, or equivalent merit	1

Sample answer:

Surface area of sphere =
$$4 \times \pi \times \left(\frac{23}{2}\right)^2$$

Surface area curved cylindrical body = $2 \times \pi \times \frac{23}{2} \times (23 \times 2)$

$$\therefore \text{ Total surface area} = \left(4 \times \pi \times \left(\frac{23}{2}\right)^2\right) + \left(2 \times \pi \times \frac{23}{2} \times 46\right)$$

$$= 4985.707...$$

$$= 4985.7 \text{ cm}^2$$

$$= 0.5 \text{ m}^2 \qquad \text{(correct to 1 decimal place)}$$

Question 35 (a)

Criteria	Marks
Provides correct solution, including a correct z-score	2
Finds z-score corresponding to 70, or equivalent merit	1

Sample answer:

$$z = \frac{70 - 58}{15}$$
$$= 0.8$$

P from table = 0.7881

P required = 0.7881 - 0.5 = 0.2881

.: 28.81%

Question 35 (b)

Criteria	Marks
Provides correct answer	1

Sample answer:

The z-score for 46 is -0.8.

By symmetry the area between 46 and 58 is equal to the area between 58 and 70.

So, the percentage of scores between 46 and 70 is twice 28.81%.

Question 35 (c)

Criteria	Marks
Provides correct solution, with evidence of using the table	2
Finds the z-score corresponding to 90th percentile, or equivalent merit	1

Sample answer:

$$1.3 = \frac{x - 58}{15}$$

$$x = 77.5$$

 \therefore Approximate minimum score = 77

Answers could include:

Question 36 (a)

Criteria	Marks
Provides correct answer	2
Attempts to use sine rule, or equivalent merit	1

Sample answer:

$$\frac{BE}{\sin 27^{\circ}} = \frac{53.8}{\sin 106^{\circ}}$$

$$BE = \frac{53.8}{\sin 106^{\circ}} \times \sin 27^{\circ}$$

$$= 25.408...$$

$$= 25.4 \text{ m}$$

Question 36 (b)

Criteria	Marks
Provides correct solution	2
Finds the length of BX, or equivalent merit	1

$$\angle EBC = 180^{\circ} - 106^{\circ}$$
$$= 74^{\circ}$$

$$\tan 74^\circ = \frac{20}{BX}$$

$$BX = \frac{20}{\tan 74^\circ}$$

$$= 5.73...$$

$$\therefore CD = 25.4 - 5.73$$
= 19.7 m (1 decimal place)

Criteria	Marks
Provides correct solution	2
Provides 7 pm Tuesday or 4 am Thursday, or equivalent merit	1

Sample answer:

Rio – flight time

- = 3 pm 20 hours
- = 7 pm Tuesday 19th July
- + time difference 13 hours
- = 8 am Wednesday 20th July

Alternative:

Rio + time difference

- = 3 pm + 13 hours
- = 4 am Thursday 21st July
- flight time
- = 8 am Wednesday 20th July

Criteria	Marks
Provides correct solution	3
Calculates the volume of the cake, or equivalent merit	2
Calculates the volume of the cylinder, or equivalent merit	1

Sample answer:

Volume of cylinder: volume of top = 5:1

Volume of cylinder =
$$\pi \times 15^2 \times 6$$

= 4241.150...
= 5 parts
Volume of cake = 6 parts
= $\frac{6}{5} \times 4241.150$
= 5089.38...

Volume of each slice is 212 cm³

... Number of slices =
$$\frac{5089.38}{212}$$

= 24.0065...
= 24 slices (to the nearest whole slice)

Question 39 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

As there are float-times for A and C, the critical path is BEGI.

Question 39 (b)

Criteria	Marks
Provides correct answer	1

Sample answer:

19 - 12 = 7 hours

Question 39 (c)

Criteria	Marks
Provides correct answer	1

Sample answer:

12 - 3 = 9 hours

9 - 1 = 8 hours

Criteria	Marks
Provides correct solution	3
• Attempts to find bearing of <i>C</i> from <i>O</i> , or equivalent merit	2
• Uses cosine rule in $\triangle ODA$ to find an angle, or equivalent merit	1

Sample answer:

In $\triangle ODA$:

$$\cos \angle AOD = \frac{38^2 + 42^2 - 67.5^2}{2 \times 38 \times 42}$$
$$= -0.42238...$$
$$\angle AOD = 114.985...$$
$$\approx 115^{\circ}$$

Bearing of D from O is 285°

$$\angle AOD = \angle DON + \angle AON$$

ie 115° = 75° + \angle AON

Bearing of C from
$$O = 40^{\circ} + 180^{\circ}$$
 (as AC is a straight line)
= 220° (nearest degree)

Criteria	Marks
Provides correct solution	4
Makes substantial progress towards a solution	3
Demonstrates in calculations understanding of importance of 15 years and 25 years	2
Identifies the required interest rate, or equivalent merit	1

Sample answer:

For 25 years need $1200 \times 225.430 = 270516$

For 15 years need extra $800 \times 151.036 = 120 828.80$

Total = \$391344.80

2024 HSC Mathematics Standard 2 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	MS-M1 Application of Measurement	MS11-3
2	1	MS-A2 Linear Relationships	MS11-9
3	1	MS-S1 Data Analysis	MS11-10
4	1	MS-N2 Network Concepts	MS2-12-8
5	1	MS-S5 The Normal Distribution	MS2-12-7
6	1	MS-M6 Non-right-angled Trigonometry	MS2-12-3
7	1	MS-F1 Money Matters	MS11-6
8	1	MS-F1 Money Matters	MS11-5
9	1	MS-A4 Types of Relationships	MS2-12-6
10	1	MS-A1 Formulae and Equations	MS11-10
11	1	MS-M7 Rates and Ratios	MS2-12-3
12	1	MS-S2 Relative Frequency and Probability	MS11-10
13	1	MS-F1 Money Matters	MS11-6
14	1	MS-A4 Types of Relationships	MS2-12-6
15	1	MS-S1 Data Analysis	MS11-10

Section II

Question	Marks	Content	Syllabus outcomes
16 (a)	2	MS-N2 Network Concepts	MS2-12-8
16 (b)	2	MS-N2 Network Concepts	MS2-12-8
17	2	MS-M7 Rates and Ratios	MS2-12-3
18 (a)	2	MS-N2 Network Concepts	MS2-12-8
18 (b)	1	MS-N2 Network Concepts	MS2-12-10
19 (a)	2	MS-S4 Bivariate Data Analysis	MS2-12-7
19 (b)	1	MS-S4 Bivariate Data Analysis	MS2-12-2
20 (a)	1	MS-F5 Annuities	MS2-12-5
20 (b)	2	MS-F5 Annuities	MS2-12-5
21 (a)	2	MS-F4 Investments and Loans	MS2-12-5
21 (b)	1	MS-F4 Investments and Loans	MS2-12-10
22	3	MS-A4 Types of Relationships	MS2-12-6
23	3	MS-F1 Money Matters	MS11-6
24 (a)	2	MS-A1 Formulae and Equations	MS11-6
24 (b)	2	MS-A1 Formulae and Equations	MS11-10
25	3	MS-F4 Investments and Loans	MS2-12-10
26	3	MS-A4 Types of Relationships	MS2-12-6
27	3	MS-F4 Investments and Loans	MS2-12-10

Page 23 of 24

Question	Marks		Content	Syllabus outcomes
28	3	MS-S1 E	Data Analysis	MS11-10
29	4		Money Matters nvestments and Loans	MS11-10, MS2-12-10
30	3	MS-S4 E	Bivariate Data Analysis	MS2-12-10
31 (a)	1	MS-S2 F	Relative Frequency and Probability	MS11-10
31 (b)	2	MS-S2 F	Relative Frequency and Probability	MS11-10
32	4	MS-M6 N	Non-right-angled Trigonometry	MS2-12-9
33	3	MS-M7 F	Rates and Ratios	MS2-12-3
34	4	MS-M1 A	Applications of Measurement	MS11-10
35 (a)	2	MS-S5 T	The Normal Distribution	MS2-12-7
35 (b)	1	MS-S5 T	The Normal Distribution	MS2-12-7
35 (c)	2	MS-S5 T	The Normal Distribution	MS2-12-7
36 (a)	2	MS-M6 N	Non-right-angled Trigonometry	MS2-12-9
36 (b)	2	MS-M6 N	Non-right-angled Trigonometry	MS2-12-9
37	2	MS-M2 V	Vorking with Time	MS11-3
38	3	MS-M1 A	Applications of Measurement	MS11-4
39 (a)	1	MS-N3 C	Critical Path Analysis	MS2-12-10
39 (b)	1	MS-N3 C	Critical Path Analysis	MS2-12-10
39 (c)	1	MS-N3 C	Critical Path Analysis	MS2-12-10
40	3	MS-M6 N	Non-right-angled Trigonometry	MS2-12-4
41	4	MS-F5 A	Annuities	MS2-12-9